• Title/Summary/Keyword: 냉매 134a

Search Result 202, Processing Time 0.028 seconds

Heat and Mass Transfer Characteristics and Performance Evaluation of a Double-Tube Condenser for an Alternative Refrigerant (대체냉매의 2중관 응축기 열 및 물질전달과 성능평가)

  • 이상무;박병덕;소산번
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.14 no.6
    • /
    • pp.468-476
    • /
    • 2002
  • This paper deals with heat and mass transfer characteristics and performance evaluation of a counter flow double-tube condenser for a multi-component refrigerant mixture. The local heat and mass transfer characteristics of ternary zeotropic refrigerant mixtures composed of HFC32/HFC125/HFC134a are evaluated for a counter flow double-tube condenser cooled by water. Then, the local values of vapor quality, thermodynamic states at bulk vapor, vapor-liquid interface and bulk liquid, heat flux and condensation mass flux are obtained. The heat exchange performance for ternary zeotropic refrigerant mixtures composed of HFC32/HFC125/HFC134a on the total pressure drop and the heat transfer characteristics are also compared with those for R404A, R410A, R502, R22, R32, Rl23 and R134a.

The Design and Performance Test of a Centrifugal Compressor for HFC-134a (대체냉매용 원심압축기의 설계 및 성능시험)

  • Sin, Jung-Kwan;Kim, Kyung-Hun
    • 유체기계공업학회:학술대회논문집
    • /
    • 2002.12a
    • /
    • pp.250-257
    • /
    • 2002
  • A centrifugal compressor for HFC-l34a has been newly designed and developed. Flow analysis using commertial programs was used to evaluate performance and internal flow of the impeller, inlet guide vane and diffuser etc. and design software was developed. The compressor for HFC-l34a was also investigated experimentally to check compression performance. The calculated data coincide the test results of compressor. The data obtained in the present study are useful for design of HFC-l34a centrifugal compressors.

  • PDF

Evaluation of the Performance Characteristics of Propane/isobutene Refrigerant Mixtures in a Small multi-refrigeration System (프로판/이소부탄 혼합냉매를 적용한 가정용 소형 멀티 냉동시스템의 성능특성에 관한 연구)

  • Lee, Moo-Yeon;Choi, Seok-Jae;Kim, Sang-Ok
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.1945-1950
    • /
    • 2004
  • In this paper, The performance of Kim-Chi refrigerator with three evaporator and one compressor was investigated in employing 55% propane and 45% isobutane (R290/R600a) refrigerant mixture as an alternative refrigerant of R134a. The drop in test was performed by varying both refrigerant charge amount and capillary tube length in order to find both the performance and reliability of a small multi-refrigeration system. As a result, Both the power consumption and COP is increased by about 15% and 10%, respectively as compared to the baseline R134a system. In addition, the propane/isobutene refrigerant mixture system took advantage of the minimization of modification and redesigning of system components because of similar thermodynamic properties with R134a such as saturation pressure, temperature, normal boiling point(NBP) characteristics

  • PDF

Experimentation and Modeling of R32/125/134a Flow Through Short Tube Orifices (R32/125/134a를 사용한 오리피스 팽창장치의 성능실험 및 모델링)

  • 김용찬
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.8 no.1
    • /
    • pp.45-54
    • /
    • 1996
  • An experimental investigation on the two-phase flow through tube orifices was performed with the refrigerant mixture of R32/125/134a(30/10/60). A series of tests were conducted to generate wide range of data at varying operation conditions with four short tubes. The tests include both single and two-phase flow conditions at the inlet of the short tube with different oil concentrations. Experimental data were presented as a function of major operating parameters and short tube diameter. Based on test results and data analysis, a semi-empirical flow model was developed to predict the mass flow rate through short tube orifices with a given set of conditions. The flow model was formed to cover both single and two-phase flow at the inlet of short tube with considering the effects of oil concentration.

  • PDF

A Study on the Characteristics of Refrigeration System Installed with Precooler, and Liquid-Vapor Separator after Expansion Device (과냉각기와 팽창장치 후 액기분리기를 적용한 냉동시스템 성능특성 연구)

  • Yun, Sang-Kook
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.35 no.1
    • /
    • pp.40-45
    • /
    • 2011
  • The purpose of research is to understand the characteristics of refrigeration system having a liquid-vapor phase separator after expansion device and precooling heat exchanger. After expansion process of typical refrigerant of freezer, R134a, the cold vapor of the expanded refrigerant mixture is separated in the liquid-vapor separator and introduced in the precooling heat exchanger to enable the liquid refrigerant to be subcooled. The analysis results showed that the increasing rate of refrigeration capacity and COP can be 8.6% and 1.4%, each. The cause of these performance improvements is due to the difference of the slope of saturated vapor and saturated liquid lines in Mollier diagram of refrigerant.

A Design of the Block Type Expansion Valve in Automotive Air Conditioning System using HFC-134a (신냉매용 자동차 공조 시스템에서 블록식 팽창밸브의 설계)

  • Kim, K.H.;Park, S.H.;Kang, W.
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.11 no.4
    • /
    • pp.196-203
    • /
    • 2003
  • This study was performed to design the optimal block type expansion valve through analyzing the characteristics of the block type expansion valve in automotive air conditioning system using HFC-134a. Because an alternative refrigerant (HFC-l34a) is being used instead of CFC-12 for automotive air conditioning system, newly designed air conditioning components are necessary due to changes in characteristics. The performance tests were accomplished through the test bench, that is manufactured based on the study. And then it was carried out to measure the variation of temperature and pressure at each part of the air conditioning system according to the compressor speed.

External Condensation Heat Transfer Coefficients of R22 Alternative Refrigerants and R134a According to the Saturated Vapor Temperature Change on a Smooth Tube (수평관에서 R22 대체냉매 및 R134a의 포화증기 온도변화에 따른 외부 응축 열전달계수에 관한 연구)

  • Yoo Gil-Sang;Hwang Ji-Hwan;Park Ki-Jung;Jung Dongsoo
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.17 no.8
    • /
    • pp.729-735
    • /
    • 2005
  • In this study, external condensation heat transfer coefficients (HTCs) were measured on a horizontal smooth tube at the saturated vapor temperature of $30^{\circ}C,\;39{\circ}C,\;and\;50^{\circ}C$ for R22, R410A, R407C, and R134a with the wall subcooling of $3\~8^{\circ}C$. The HTCs of all refrigerants are the highest at $30^{\circ}C,\;39{\circ}C,\;and\;50^{\circ}C$ in order. This trend is due to its excellent thermodynamic properties of the liquid phase. The measured data of HTCs were compared with the calculated ones by Nusselt's equation for a smooth tube. Measured HTCs of R22, R134a, R410A are $4.2\~7.5\%$ higher than prediction respectively while those of R407C are $15.6\~28.9\%$ lower than the prediction.

기후변화 협약대응 대체냉매 자동차 에어컨시스템 기술 동향

  • Won, Jong-Pil
    • The Magazine of the Society of Air-Conditioning and Refrigerating Engineers of Korea
    • /
    • v.39 no.2
    • /
    • pp.10-16
    • /
    • 2010
  • 현재의 자동차용 HFC-134a 에어컨시스템을 대체하기 위하여 세계적으로 소개되고 있는 지구온난화 규제 대응 대체냉매와 이를 적용한 에어컨 시스템 개발 동향을 소개하고자 한다.

  • PDF

Performance Characteristics of a Drop-in System for a Mobile Air Conditioner Using Refrigerant R1234yf (냉매 R1234yf 적용 자동차용 에어컨 Drop-in 성능 특성)

  • Cho, Honghyun;Lee, Hoseong;Park, Chasik
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.24 no.12
    • /
    • pp.823-829
    • /
    • 2012
  • In this study, the performance of mobile air conditioner(MAC) systems to which the refrigerants R134a and R1234yf were used was evaluated to compare the characteristic of automotive refrigeration cycles with refrigerant. The experimental setup of a MAC consists of an belt driven compressor, a condenser, an evaporator and a block type thermal expansion valve. The drop-in test on MAC were carried out under variable compressor speed from 800 to 2500 rpm. Performance test by using R1234yf and R134a in the same system revealed low the charge amount and mass flow rates for using R1234yf, that is, up to 10% and 17%, respectively. The compressor discharge temperature of R1234yf is $8^{\circ}C$ lower than that of R134a. The cooling capacity with R1234yf system decreased by 4~7% compared with R134a system. In addition, The COP of R1234yf system is lower 3~4% than that of R134a system.

A Study on the Fluid H in Automotive Air Conditioning System as an Alternative Refrigerant (자동차 공조용 대체 냉매로서의 H냉매에 대한 연구)

  • Choi, Jeong-Won;Nam, Soo-Byeong;Bang, Scott
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.15 no.6
    • /
    • pp.170-176
    • /
    • 2007
  • It is time to prepare the phaseout of R134a, the current refrigerant, in automotive air conditioning system because the EC deadline has been coming with new platform vehicles in 2011 and all vehicles by 2017. Until now a high-pressure carbon dioxide($CO_2$) system is the leading replacement of R134a in European auto-makers but there is no firm agreement in the world automotive market. Recently three new fluids have been announced as the possibilities from Honeywell, DuPont and INEOS Fluor. The new alternative refrigerant should meet the requirements like non flammable, non toxic, no ozone depletion effect and low GWP(under 150 to meet EC regulation). The objectives of this paper are to review the fluid H from Honeywell, the more possible alternative refrigerant in 3 new fluids, compare the properties of R134a & fluid H and see the possibility as a replacement of R134a. In this experimental paper we ran and reviewed the cooling performance data in the bench system, the vehicle and the field test. We found the possibility of fluid H system to meet the R134a system performance with some hardware modifications but agreed that it is still needed to study about the long term safety, environmental effects, material compatibilities and so on.