• Title/Summary/Keyword: 냉매 압축기

Search Result 157, Processing Time 0.023 seconds

Control characteristics of a refrigerant compressor test facility (냉매압축기 성능시험장치의 제어 특성)

  • Lee, J. Y.;Lee, D. Y.;Kim, K. H.;Nam, P. W.
    • 유체기계공업학회:학술대회논문집
    • /
    • 1999.12a
    • /
    • pp.46-51
    • /
    • 1999
  • This paper describes the control charcteristics of thermal/flow systems. In thermal/flow systems, the transport lag plays as a dead time causing a deterioration of the controllability. Besides this, such many parameters including the temperature, pressure, and flow rate affect the system response that a control scheme which can deal with multi-input is required. Particularly in a refrigerant compressor test facility, the evaporator and condenser interact each other so that the change in the evaporator pressure cause the condenser pressure to change or vice versa. Therefore, to control the evaporator pressure, not only the cooling water flow rate in the evaporator but also the coolant flow rate in the condenser is considered. Meanwhile, the conventional PID controllers, which is suitable for a single input system, shows a large overshoot for a disturbance input. In this work, the predictive control scheme is introduced and its applicability is discussed for thermal/flow systems.

  • PDF

A Study on Plate & Shell type Evaporator in HVAC System for Offshore Plant (해양플랜트 HVAC 시스템용 플레이트·쉘 타입 증발기에 관한 연구)

  • Park, Jae-Hong
    • Journal of the Korean Institute of Gas
    • /
    • v.24 no.1
    • /
    • pp.33-40
    • /
    • 2020
  • Chiller systems which have better temperature stability than Direction expansion coils are often used as condensing units in HVAC systems for offshore plants. Large capacity compressors and electronic expansion valves in chiller systems are mostly imported, and the size of a chiller system depends on heat exchangers such as evaporators and condensers which are locally produced. Due to limited space in the offshore plants, shipyards are demanding manufacturers to make equipment compact. In this paper, a shell & tube heat exchanger, which is used as an evaporator in the conventional flooded chiller system, is replaced by a newly developed compact plate & shell heat exchanger. The main development process of the plate & shell heat exchanger is introduced, and its performances were experimentally evaluated with a real flooded chiller system, and the results are presented.

Development of the Wearable Personal Cooling System (착용형 개인 냉방시스템 개발)

  • Jang, Jun-Young
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.7
    • /
    • pp.2872-2877
    • /
    • 2012
  • This paper discusses the development of the wearable personal cooling system for reducing thermal stress in hot environment. The personal cooling system is operated with the compact refrigeration system by compressing refrigerant. The compact refrigeration system is applied with the miniaturization and weight reduction for portable and wearable cooling system. The body heat is reduced by heat conduction with evaporator in direct cooling type. The cooling capacity of the wearable personal cooling system is approximately 100W and, the system could maintain the inside temperature of approximately 12-$13^{\circ}C$ lower than the ambient temperature. The weight of the wearable cooling system is about 3kg including vest, case, battery and all parts.

Thermodynamic Analysis on Hybrid Turbo Expander - Heat Pump System for Natural Gas Pressure Regulation (히트펌프를 적용한 터보팽창기 천연가스 정압기지의 열역학적 분석)

  • Sung, Taehong;Kim, Kyoung Hoon;Han, Sangjo;Kim, Kyung Chun
    • Journal of the Korean Institute of Gas
    • /
    • v.18 no.4
    • /
    • pp.13-20
    • /
    • 2014
  • In natural gas distribution system, gas pressure is regulated correspond to requirement using throttle valve which is releasing huge pressure energy as useless form. The waste pressure can be recovered by using turbo machinery devices such as a turbo expander. In this process, excessive temperature drop occurs due to Joule-Thompson effect during the expansion process. Installing natural gas boiler before or after the turbo expander prevents temperature drop. Fuel cell or gas engine hybrid system further improve the efficiency, but 1~2% of total transporting natural gas is used for operating the hybrid system. In this study, a heat pump system is proposed as a preheating device which can be operated without using transporting natural gas. Thermodynamic analysis on evaporating and condensing temperatures and refrigerants is conducted. Results show that R717 is proper refrigerant for the hybrid system with high COP and low turbine work within the defined operating conditions. In domestic usage in Korea, the heat pump system has more economic feasibility owing to natural gas being imported with a high price of LNG form.

Design and Assessment of Reliquefaction System According to Boil Off Gas Reliquefaction Rate of Liquefied Hydrogen Carrier (액화수소 운반선의 증발가스 재액화 비율에 따른 재액화 시스템의 설계 및 평가)

  • Cho, Wook-Rae;Lee, Hyun-Yong;Ryu, Bo-Rim;Kang, Ho-Keun
    • Journal of Navigation and Port Research
    • /
    • v.44 no.4
    • /
    • pp.283-290
    • /
    • 2020
  • BOG (Boil Off Gas) generation is unavoidable in the liquefied hydrogen carrier, and proper measures are necessary to prevent pressure problems inside the cargo tank. The BOG can be used as propulsion fuel for ships, and the remaining parts used for propulsion must be effectively managed, such as in the form of reliquefying or burning. This study proposes an BOG reliquefaction system optimized for a 160,000 m3 liquefied hydrogen carrier with a hydrogen propulsion system. The system comprises a hydrogen compression and helium refrigerant section, and increases the efficiency by effectively using the cold energy of the BOG discharged from the cargo tank. In this study, the system was evaluated through the exergy efficiency and SEC (Specific Energy Consumption) analysis according to the rate of the reliquefaction of the BOG while the hydrogen BOG with a supply temperature of -220℃ entered the reliquefaction system. As a result, it showed SEC of 4.11 kWh/kgLH2 and exergy efficiency of 60.1% at the rate of reliquefaction of 20%. And the parametric study of the effects of varying the hydrogen compression pressure, inlet temperature of the hydrogen expander, and the feed hydrogen temperature was conducted.

A study on design for free cooling system using dry cooler (드라이쿨러를 적용한 외기냉수냉방 시스템 설계에 관한 연구)

  • Yoon, Jung-In;Baek, Seung-Moon;Heo, Jeong-Ho;Kim, Young-Min;Son, Chang-Hyo
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.38 no.9
    • /
    • pp.1027-1031
    • /
    • 2014
  • Free cooling system is used to reduce energy consumption of cooling system. Free cooling system is consisted of cooling group and dry-cooler in which heat exchange of chilled water and out air is conducted. Although this system has an excellent energy saving effect in place having cooling load regularly, data or material of design for free cooling system is lacked. In this study, characteristics analysis of free cooling system is conducted through software HYSYS with changing some facts. The main result is following as : Dry-cooler capacity is influenced by out air temperature, required chilled water temperature and LMTD(Logarithmic Mean Temperature Difference) of heat exchanger. As out air temperature is more low, dry-cooler capacity become increased. in addition, as required chilled water temperature is more high and LMTD is more low, the out air temperature range is widened for using dry-cooler. If out air temperature is below $0^{\circ}C$, antifreeze need to be used because freeze and burst can be occurred. In case of South Korea, antifreeze of 34% of ethylene glycol concentration is proper. When compressor load of R22, R134a and R407C is compared, considering environmental regulation and energy consumption, R134a is best working fluid.

Recent Progress in Air Conditioning and Refrigeration Research : A Review of Papers Published in the Korean Journal of Air-Conditioning and Refrigeration Engineering in 2007 (설비공학 분야의 최근 연구 동향 : 2007년 학회지 논문에 대한 종합적 고찰)

  • Han, Hwa-Taik;Shin, Dong-Sin;Choi, Chang-Ho;Lee, Dae-Young;Kim, Seo-Young;Kwon, Yong-Il
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.20 no.12
    • /
    • pp.844-861
    • /
    • 2008
  • The papers published in the Korean Journal of Air-Conditioning and Refrigeration Engineering during the year of 2007 have been reviewed. Focus has been put on current status of research in the aspect of heating, cooling, ventilation, sanitation and building environments. The conclusions are as follows. (1) The research trends of fluid engineering have been surveyed as groups of general fluid flow, fluid machinery and piping, etc. New research topics include micro nano fluid, micropump and fuel cell. Traditional CFD was still popular and widely used in research and development. Studies about fans and pumps were performed in the field of fluid machinery. Characteristics of flow and fin shape optimization are studied in the field of piping system. (2) The research works on heat transfer have been reviewed in the field of heat transfer characteristics, heat exchangers, and desiccant cooling systems. The research on heat transfer characteristics includes thermal transport in pulse tubes, high temperature superconductors, ground heat exchangers, fuel cell stacks and ice slurry systems. For the heat 'exchangers, the research on pin-tube heat exchanger, plate heat exchanger, condensers and gas coolers has been cordially implemented. The research works on heat transfer augmenting tubes have been also reported. For the desiccant cooling systems, the studies on the design and operating conditions for desiccant rotors as well as performance index are noticeable. (3) In the field of refrigeration, many papers were presented on the air conditioning system using CO2 as a refrigerant. The issues on the two-stage compression, the oil selection, and the appropriate oil charge were treated. The subjects of alternative refrigerants were also studied steadily. Hydrocarbons, DME and their mixtures were considered and various heat transfer correlations were proposed. (4) Research papers have been reviewed in the field of building facilities by grouping into the researches on heat and cold sources, air conditioning and air cleaning, ventilation and fire research including tunnel ventilation, flow control of piping system, and sound research with drain system. Main focuses have been addressed to the promotion of efficient or effective use of energy, which helps to save energy and results in reduced environmental pollution and operating cost. (5) Studies were mostly focused on analyzing the indoor environment in various spaces like cars, old tombs, machine rooms, and etc. in an architectural environmental field. Moreover, subjects of various fields such as the evaluation of noise, thermal environment, indoor air quality and development of energy analysis program were researched by various methods of survey, simulation, and field experiment.