• Title/Summary/Keyword: 냉동 사이클

Search Result 163, Processing Time 0.031 seconds

Performance comparison of refrigeration cycle using R134a with the vapor-liquid ejector (증기-액 이젝터를 적용한 R134a 냉동사이클의 성능 비교)

  • Yoon, Jung-In;Kim, Chung-Lae;Son, Chang-Hyo
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.39 no.9
    • /
    • pp.890-894
    • /
    • 2015
  • Recently, research on high-efficiency refrigeration cycles that apply an ejector to basic cycles has progressed actively. The role of the ejector and the performance of refrigeration cycles are subordinate to ejector locations. In this study, the performance of three refrigeration cycles with different ejector locations is compared and analyzed. The results showed an increased COP in all cycles due to the application of the ejector, with the highest increase of 44% compared to a basic refrigeration cycle. The ejector refrigeration cycle proposed in this study presents the highest COP, 3.47. Moreover, the decrease in condensation capacity in Bergander's cycle, Xing's cycle, and our proposed ejector refrigeration cycle went up to 21%. In refrigeration cycles applying the ejector, the pressure ratio of the ejector, the vapor fraction of discharge, and compression ratio are important factors for COP enhancement. For this reason, detailed and accurate control of these is significant.

Performance Characteristics of Cascade Refrigeration System Using R744 and R410A (R744-R410A용 이원 냉동시스템 성능 특성)

  • Ku, Hak-Keun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.4
    • /
    • pp.1548-1554
    • /
    • 2013
  • This paper presents the analysis on performance characteristics of R744-R410A cascade refrigeration system to offer the basic design data for the operating parameters of this system. The performance of cascade refrigeration system is analyzed by using EES program. The operating parameters include compressor efficiency, and condensing and evaporating temperature in R410A high- and R744 low-temperature cycle, respectively. The COP of this system increases with the decrease of condensing temperature, and increases with the increasing evaporating temperature. And the COP of this system increases with the compression efficiency. Therefore, it can be seen that the compression efficiency, and evaporating and condensing temperature of R744-R410A cascade refrigeration system have an effect on the COP of this system. Also, it can be known that the cascade evaporation temperature with the highest efficiency in each parameter is present. Thus, it is an important to design R744-R410A cascade refrigeration system by considering these parameters.

Performance Analysis of an Ammonia(R717) and Carbon Dioxide(R744) Two-Stage Cascade Refrigeration System ($NH_3-CO_2$를 사용하는 이원 냉동 시스템의 성능 분석)

  • Son, Chang-Hyo
    • Journal of the Korean Institute of Gas
    • /
    • v.14 no.1
    • /
    • pp.1-7
    • /
    • 2010
  • In this paper, cycle performance analysis of $NH_3-CO_2$(R717-R744) two-stage cascade refrigeration system is presented to offer the basic design data for the operating parameters of the system. The operating parameters considered in this study include subcooling and superheating degree, compressor efficiency, and condensing and evaporating temperature in the ammonia(R717) high temperature cycle and the carbon dioxide low temperature cycle. The main results were summarized as follows : The COP of two-stage cascade refrigeration system increases with the increasing subcooling degree, but decreases with the increasing superheating degree. The COP of two-stage cascade refrigeration system decreases with the increasing condensing temperature, but increases with the increasing evaporating temperature. And the COP of two-stage cascade refrigeration system increases with increasing the compressor efficiency. Therefore, superheating and subcoolng degree, compressor efficiency, and evaporating and condensing temperature of $NH_3-CO_2$(R717-R744) two-stage cascade refrigeration system have an effect on the COP of this system.

A Simulation Study on the Cascade Refrigeration Cycle for the Liquefaction of the Natural Gas [2]: An Application to the Multistage Cascade Refrigeration Cycle (천연가스 액화를 위한 캐스케이드 냉동사이클의 전산모사에 대한 연구 [2]: 다단 캐스케이드 냉동 사이클에 적용)

  • Cho, Jung-Ho;Kim, Yu-Mi
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.2
    • /
    • pp.1013-1019
    • /
    • 2011
  • In this paper, simulation works for a multi-stage cascade refrigeration cycle using propane, ethylene and methane as refrigerants have been performed for the liquefaction of natural gas using Peng-Robinson equation of state built-in PRO/II with PROVISION release 8.3. The natural gas feed compositions were supplied from Korea Gas Corporation and the flow rate was assumed to be 5.0 million tons per annual. Supply temperature for propane refrigerant was fixed as $-40^{\circ}C$, that for ethylene refrigerant as $-95^{\circ}C$, and that for methane refrigerant as $-155^{\circ}C$. For the multi-stage refrigeration cycle, three-stage refrigeration was assumed for propane refrigeration cycle, two-stage refrigeration for ethylene refrigeration cycle and three-stage refrigeration for methane refrigeration cycle. Natural gas was finally cooled and liquefied to $-162^{\circ}C$ by Joule-Thomson expansion. Conclusively, 91.71% by mole of the natural gas liquefaction ratio was obtained through a cascade refrigeration cycle and Joule-Thomson expansion and 0.433 kW of compression power was consumed for the liquefaction of 1.0 kg/hr of natural gas.

Refrigerant Flow Controlling Technology of the Refrigeration and Air Conditioning System (냉동.공조 시스템의 냉매유량 제어기술)

  • 오후규;김재돌
    • Journal of the KSME
    • /
    • v.35 no.2
    • /
    • pp.154-166
    • /
    • 1995
  • 냉동\ulcorner공조기의 성능을 높이기 위해서는 정상상태 운전시는 물론 증발기 열부하 등 각종 작동 조건의 변화에 대응하여 운전의 평형점(balance point) 추이를 적절하게 조정함과 동시에 냉동 사이클 각부의 냉매 상태량을 과도적으로도 제어해야 한다. 이 글에서는 냉동\ulcorner공조기의 자동 제어에 있어서 가장 중요한 요소중의 하나인 냉매계통의 모델화와 냉동 사이클의 응답 및 제어 등에 관해서 서술하고자 한다.

  • PDF

Performance Analysis of Refrigeration Cycle of Hydrocarbon Refrigerant using Suction-Line Heat Exchanger (흡입관 열교환기를 이용한 탄화수소계 냉매용 냉동사이클의 성능 분석)

  • Ku, Hak-Keun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.10 no.9
    • /
    • pp.2195-2201
    • /
    • 2009
  • This paper considers the influence of suction-line heat exchangers on the efficiency of a refrigeration cycle using hydrocarbon refrigerants such as R290, R600a and R1270. These suction-line heat exchangers can, in some cases, yield improved system performance while in other cases they degrade system performance. A steady state mathematical model is used to analyze the performance characteristics of refrigeration cycle with suction-line heat exchanger. The influence of operating conditions, such as the mass flowrate of hydrocarbon refrigerants, inner diameter tube and length of suction-line heat exchanger, to the performance of the cycle is also analyzed in the paper. Results showed that the mass flowrate of hydrocarbon refrigerants, inner diameter tube and length of suction-line heat exchanger, and effectiveness have an effect on the cooling capacity, compressor work and RCI(Relative Capacity Index) of this system. With a thorough grasp of these effect, it is necessary to design the compression refrigeration cycle of hydrocarbon refrigerants using suction-line heat exchanger.

A Study on the Cascade Hybrid Cooling/Refrigeration Cycle Equipped With Intercooler and Air-Cooled Condenser in Series (인터쿨러와 공랭식 응축기를 동시에 사용하는 냉방-냉동 겸용 캐스케이드 사이클에 대한 연구)

  • Kim, Nae-Hyun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.7
    • /
    • pp.353-362
    • /
    • 2019
  • Thermodynamic analysis of cascade refrigeration systems has attracted considerable research attention. On the other hand, a system evaluation based on thermodynamic analyses of the individual parts, including the evaporator, condenser, intercooler, expansion valve, etc., has received less attention. In this study, performance analysis was conducted on a cascade refrigeration system, which has an individual cooling and refrigeration evaporator, and equips the intercooler and air-cooled condenser in a series in a lower cycle. The thermo-fluid design was then performed on the major components of the system - upper condenser, lower condenser, cooling evaporator, refrigeration evaporator, intercooler, compressor, electronic expansion valve - of 15 kW refrigeration, and 8 kW cooling capacity using R-410A. A series of simulations were conducted on the designed system. The change in outdoor temperature from 26 C to 38 C resulted in the cooling capacity of the lower evaporator remaining approximately the same, whereas it decreased by 9% at the upper evaporator and by 63% at the intercooler. The COP decreased with increasing outdoor temperature. In addition, the COP of the cycle with the intercooler operation was higher that of the cycle without the intercooler operation. Furthermore, the increase in the upper condenser size by two fold increased the upper evaporator by 4%. On the other hand, the lower evaporator capacity remained the same. The COP of the upper cycle increased with increasing upper condenser size, whereas that of the lower cycle remained almost the same. When the size of the lower condenser was increased 2.8 fold, the intercooler capacity increased by 8%, whereas those of upper and the lower evaporator remained approximately the same. Furthermore, the COP of the lower cycle increased with an increase in the lower condenser. On the other hand, the change of the upper condenser was minimal.

Development of Cascade Refrigeration System Using R744 and R404A - Analysis on Performance Characteristics - (R744-R404A용 캐스케이드 냉동시스템 개발에 관한 연구(1) - 성능 특성에 관한 분석 -)

  • Oh, Hoo-Kyu;Son, Chang-Hyo
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.35 no.2
    • /
    • pp.182-188
    • /
    • 2011
  • In this paper, analysis on the performance characteristics of R744-R404A cascade refrigeration system is presented to offer the basic design data for the operating parameters of the system. The operating parameters considered in this study include subcooling and superheating degree, compressor efficiency, and condensing and evaporating temperature in R404A high- and R744 low-temperature cycle, respectively. The main results were summarized as follows : It was observed that the highest COP of the system is achieved by higher superheating degree in R744 cycle than that in R404A cycle. The COP of the system increased by giving the subcooling degree in both cycles. The COP of the cascade system is the highest value when the system is operated at an optimum evaporation temperature.

Analysis of Vapor Compression Refrigeration Cycle Performance Depending on Different Joining Method of Non-adiabatic Capillary Tube (비단열 모세관 접합방법이 증기압축식 냉동사이클 성능에 미치는 영향 해석)

  • Yi, Dae-Yong;Park, Sang-Goo;Kim, Hyun-Jung;Jeong, Ji-Hawn
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.33 no.8
    • /
    • pp.1144-1151
    • /
    • 2009
  • Refrigeration systems can be incorporated with non-adiabatic capillary tubes to improve their efficiency. The non-adiabatic capillary tube is constructed by joining the capillary tube with suction pipe to allow heat transfer between them, which is called capillary tube-suction line heat exchanger(SLHX). There are various joining methods and they may influence the characteristics of the refrigeration cycle. The present work aims to analyze the effect of widely-used two joining methods on the refrigeration cycle. The results show that soldered SLHX has much less thermal resistance than tapered SLHX but slightly outperforms in terms of coefficient of performance(COP) and cooling capacity. The soldered SLHX increased COP and cooling capacity of a refrigerator by 5.09% and 14.77% while the tapered SLHX did by 5.05% and 14.75%, respectively.

A Comparative Study Between One- and Two-Stage Refrigeration System for the Natural Gas Cooling Process (천연가스 냉각을 위한 1단 냉동과 2단 냉동 사이의 비교연구)

  • Cho, Jung-Ho;Kim, Dong-Min
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.8
    • /
    • pp.3106-3111
    • /
    • 2010
  • In this study, a comparative study was performed between one- and two-stage refrigeration system to cool the natural gas temperature down to $-40^{\circ}C$ using propane as a chilling medium. As a thermodynamic model, Peng-Robinson equation of state equation was applied and PRO/II with PROVISION release 8.3 at Invensys company was utilized for the simulation of the refrigeration system. Through this study, optimization work showed that two-stage refrigeration system was proven to save about 33.5% refrigeration power consumption compared to the one-stage refrigeration cycle.