• Title/Summary/Keyword: 냉간압연

Search Result 223, Processing Time 0.024 seconds

Effect of Pass Schedule on the Microstructures and Mechanical Properties of Multi-step Cold Rolled High Carbon Steel Wires (다단계 냉간 압연된 고탄소강 와이어의 미세조직 및 기계적 특성에 미치는 패스스케줄의 영향)

  • Woo, Dong-Hyeok;Lee, Wook-Jin;Park, Ik-Min;Park, Yong-Ho
    • Korean Journal of Materials Research
    • /
    • v.21 no.6
    • /
    • pp.320-326
    • /
    • 2011
  • Flat rolling of wire is an industrial process used to manufacture electrical flat wire, medical catheters, springs, piston segments and automobile parts, among other products. In a multi-step wire flat rolling process, a wire with a circular crosssection is rolled at room temperature between two flat rolls in several passes to achieve the desired thickness to width ratio. To manufacture a flat wire with a homogeneous microstructure, mechanical and metallurgical properties with an appropriate pass schedule, this study investigated the effect of each pass schedule (1stand ~ 4stand) on the microstructures, mechanical properties and widths of cold rolled high carbon steel wires using four-pass flat rolling process. The evolutions of the microstructures and mechanical properties of the widths of cold rolled wires during three different pass schedules of the flat rolling process of high carbon wires were investigated, and the results were compared with those for a conventional eight-pass schedule. In the width of cold rolled wires, three different pass schedules are clearly distinguished and discussed. The experimental conditions were the same rolling speed, rolling force, roll size, tensile strength of the material and friction coefficient. The experimental results showed that the four-pass flat cold rolling process was feasible for production of designed wire without cracks when appropriate pass schedules were applied.

Long length HTS coated conductor by RABiTS PLD method (RABiTS PLD 법을 이용한 장선 박막형 고온초전도선재)

  • Ko, Rock-Kil;Kim, Ho-Sup;Ha, Hong-Soo;Yang, Joo-Sang;Park, Yu-Mi;Song, Kyu-Jeong;Oh, Sang-Soo;Park, Chan;Kim, Young-Cheol
    • Proceedings of the KIEE Conference
    • /
    • 2005.07c
    • /
    • pp.1841-1843
    • /
    • 2005
  • 냉간 압연과 열처리 공정을 통해 2축 배향성을 가지는 금속 기판 위에 산화물 박막을 중착 시켜 같은 정도의 2축 배향성을 갖도록 제조된 RABiTS template 위에 YBCO 초전도체를 PLD 방법으로 증착하여 YBCO coated conductor 선재를 제조하였다. RABiTS template은 $NiW/Y_2O_3/YSZ/CeO_2$ 구조로 DC reactive sputtering와 PLD 방법에 의해 증착되었다. 모든 공정은 reel-to-reel 방식의 연속 공정으로 이루어졌다. 1m와 10m급의 장선 고온초전도선재를 제조하고, 이에 대한 전기적 특성과 초전도 및 다층 산화물 완충층에 대한 결정성, 표면 특성에 대한 분석을 수행하였다. 그 결과 1m 길이에서 end-to-end 107A와 10.6m 길이에서 end-to-end 51A의 임계 전류를 획득하였다. 제조된 박막형 선재의 초전도 층과 다층의 산화물 완충층 모두 금속 기판의 결정성을 그대로 유지하면서, epitaxial하게 성장하였으며, 최종 YBCO의 in-plane FWHM 값은 > $9^{\circ}$를 유지하였다.

  • PDF

Long length HTS coated conductor by RABiTS-PLD method (RABiTS-PLD 법을 이용한 장선 박막형 고온초전도선재)

  • Ko, Rock-Kil;Kim, Ho-Sup;Ha, Hong-Soo;Yang, Joo-Sang;Park, Yu-Mi;Song, Kyu-Jeong;Oh, Sang-Soo;Park, Chan;Kim, Young-Cheol
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.07a
    • /
    • pp.50-51
    • /
    • 2005
  • 냉간 압연과 열처리 공정을 통해 2축 배향성을 가지는 금속 기판 위에 산화물 박막을 증착 시켜 같은 정도의 2축 배향성을 갖도록 제조된 RABiTS template 위에 YBCO 초전도체를 PLD 방법으로 증착하여 YBCO coated conductor 선재를 제조하였다. RABiTS template은 NiW/$Y_2O_3$/NSZ/$CeO_2$ 구조로 DC reactive sputtering와 PLD 방법에 의해 증착되었다. 모든 공정은 reel-to-reel 방식의 연속 공정으로 이루어졌다. 1m와 10m급의 장선 고온초전도선재를 제조하고, 이에 대한 전기적 특성과 초전도 및 다층 산화물 완충층에 대한 결정성, 표면 특성에 대한 분석을 수행하였다. 그 결과 1m 길이에서 end-to-end 107 A와 10.6m 길이에서 end-to-end 51A의 임계 전류를 획득하였다. 제조된 박막형 선재의 초전도 층과 다층의 산화물 완충층 모두 금속 기판의 결정성을 그대로 유지하면서, epitaxial하게 성장하였으며, 최종 YBCO의 in-plane FWHM 값은 > $9^{\circ}$를 유지 하였다.

  • PDF

Study on the deposition rate and vapor distribution of Al films prepared by vacuum evaporation and arc-induced ion plating (증착방법에 따른 Al 피막의 증착율 및 증기분포에 관한 연구)

  • 정재인;정우철;손영호;이득진;박성렬
    • Journal of the Korean Vacuum Society
    • /
    • v.9 no.3
    • /
    • pp.207-215
    • /
    • 2000
  • Al films on cold-rolled steel sheet have been prepared by vacuum evaporation and arc-induced ion plating, respectively, and the evaporation rate and vapor distribution (thickness distribution over the substrate) have been investigated according to deposition conditions. The arc-induced ion plating (AIIP) method have been employed, which makes use of arc-like discharge current induced by ionization electrode located near the evaporation source. The AIIP takes advantage of high ionization rate compared with conventional ion plating, and can be carried out at low pressure of less than $10^{-4}$ torr. Very high evaporation rate of more than 2.0 mu\textrm{m}$/min could be achieved for Al evaporation using alumina liner by electron beam evaporation. The geometry factor n for the $cos^{n/\phi}$ vapor distribution, which affects the thickness distribution of films at the substrate turned out to be around 1 for vacuum evaporation, while it features around 2 or higher for ion plating. For the ion plated films, it has been found that the ionization condition and substrate bias are the main parameters to affect the thickness distribution of the films.

  • PDF

Microstructure and Mechanical Properties of AA6061/AA5052/AA6061 Complex Sheet Fabricated by Cold-Roll Bonding Process (냉간압연접합법에 의해 제조된 AA6061/AA5052/AA6061 복합판재의 미세조직 및 기계적 성질)

  • Hwang, Ju-Yeon;Lee, Seong-Hee
    • Korean Journal of Materials Research
    • /
    • v.29 no.6
    • /
    • pp.392-397
    • /
    • 2019
  • A cold roll-bonding process is applied to fabricate an AA6061/AA5052/AA6061 three-layer clad sheet. Two AA6061 and one AA5052 sheets of 2 mm thickness, 40 mm width, and 300 mm length are stacked, with the AA5052 sheet located in the center. After surface treatment such as degreasing and wire brushing, sample is reduced to a thickness of 1.5 mm by multi-pass cold rolling. The rolling is performed at ambient temperature without lubricant using a 2-high mill with a roll diameter of 400 mm at rolling speed of 6.0 m/sec. The roll bonded AA6061/AA5052/AA6061 complex sheet is then hardened by natural aging(T4) and artificial aging(T6) treatments. The microstructures of the as-roll bonded and age-hardened Al complex sheets are revealed by optical microscopy; the mechanical properties are investigated by tensile testing and hardness testing. After rolling, the roll-bonded AA6061/AA5052/AA6061 sheets show a typical deformation structure in which grains are elongated in the rolling direction. However, after T4 and T6 aging treatment, there is a recrystallization structure consisting of coarse equiaxed grains in both AA5052 and AA6061 sheets. The as roll-bonded specimen shows a sandwich structure in which an AA5052 sheet is inserted into two AA6061 sheets with higher hardness. However, after T4 and T6 aging treatment, there is a different sandwich structure in which the hardness of the upper and lower layers of the AA6061 sheets is higher than that of the center of the AA5052 sheet. The strength values of the T4 and T6 age-treated specimens are found to increase by 1.3 and 1.4 times, respectively, compared to that value of the starting material.

Effect of Cold-Rolling Direction on Creep Behaviors in Zr-1.1Nb-0.05Cu Alloy (냉간 압연 방향에 따른 Zr-1.1Nb-0.05Cu 합금의 크리프 거동)

  • Seol, Yong-Nam;Jung, Yang-Il;Choi, Byoung-Kwon;Park, Jeong-Yong;Hong, Sun-Ig
    • Korean Journal of Metals and Materials
    • /
    • v.49 no.5
    • /
    • pp.355-361
    • /
    • 2011
  • Creep behaviors of the Zr-1.Nb-0.5Cu (HANA-6) alloy strips with different orientations were investigated. Anisotropy was observed in the samples depending on their physical orientations due to the formation of texture in their microstructures. The creep strain rate was increased as the test stress and temperature increased. The rate was higher along the rolling-direction than in the transverse-direction irrespective of annealing conditions. However, the samples with $45^{\circ}$ direction showed different behaviors depending on the annealing temperature. When strips were finally annealed at $600^{\circ}C$ for 10 min, the primary creep rate of the $45^{\circ}$ strip was the highest among the various orientations although the saturated creep rate was the lowest. In the case of final annealing at $660^{\circ}C$ for 4 h, the highest creep rate occurred throughout the creep test in the $45^{\circ}$ strip. It is considered that the fraction of (100) planes along the direction of creep deformation affect the creep rates.

Fracture Mechanisms of Cold-Rolled Light-Weight Steel Plates Containing Different Carbon Content (탄소함량이 다른 경량철강판의 냉간 압연에 의한 파괴기구)

  • Han, Seung Youb;Shin, Sang Yong;Lee, Sunghak;Kim, Nack J.;Kwak, Jai-Hyun;Chin, Kwang-Geun
    • Korean Journal of Metals and Materials
    • /
    • v.48 no.5
    • /
    • pp.377-386
    • /
    • 2010
  • An investigation was conducted into the effects of $\kappa$-carbides on the cracking phenomenon, which often occurred in cold-rolled light-weight steel plates. Three kinds of steels were fabricated by varying the C content, and their microstructures and tensile properties were investigated. In the two steels that contained a high carbon content, the band structures of ferrites and $\kappa$-carbides that were severely elongated along the rolling direction were well developed, whereas continuous arrays of $\kappa$-carbides were formed in the steel that contained a low carbon content. Detailed microstructural analyses of the deformed region beneath the tensile fracture surface showed that the cracks initiated at arrays of $\kappa$-carbides or $\kappa$-carbides formed interfaces between the band structures, which initiated cleavage fractures in the ferrite bands, while the bands populated with a number of $\kappa$-carbides did not play an important role in propagating the cracks. Thus, the minimization of interfacial $\kappa$-carbides or $\kappa$-carbide arrays by increasing the carbon content was essential for preventing cracking from occurring during cold rolling.

Microstructure and Mechanical Properties of Cold Roll-Bonded Layered AA6061/AA5052/AA6061/AA5052 Aluminum Alloy Sheet (냉간압연접합된 층상 AA6061/AA5052/AA6061/AA5052 알루미늄합금판재의 미세조직 및 기계적 성질)

  • Jo, Sang-Hyeon;Park, Bo-Bae;Lee, Seong-Hee
    • Korean Journal of Materials Research
    • /
    • v.32 no.3
    • /
    • pp.161-167
    • /
    • 2022
  • A cold roll-bonding process is applied to fabricate an AA6061/AA5052/AA6061/AA5052 layered sheet. Two AA6061 and one AA5052 sheets of 2mm thickness, 40mm width and 300mm length are alternately stacked, then reduced to a thickness of 2.0 mm by multi-pass cold rolling after surface treatment such as degreasing and wire brushing. The rolling is performed at ambient temperature without lubricant using a 2-high mill with a roll diameter of 400 mm at a rolling speed of 6.0 m/sec. The roll-bonded AA6061/AA5052/AA6061/AA5052 layered sheet is then hardened by natural aging (T4) and artificial aging (T6) treatments. The microstructure of the as-roll bonded and the age-hardened Al sheets was revealed by SEM observation; the mechanical properties were investigated by tensile testing and hardness testing. After T4 and T6 aging treatment, the specimens had a recrystallization structure consisting of coarse equiaxed grains in both AA5052 and AA6061 regions. The as-roll-bonded specimen showed a clad structure in which the hardness of AA5052 regions was higher than that of AA6061 regions. However, after T4 and T6 aging treatment, specimens exhibited different structures, with hardness of AA6061 regions higher than that of AA5052 regions. Strengths of T6 and T4 age-treated specimens were found to increase by 1.55 and 1.36 times, respectively, compared to the value of the starting material.

A study on coil temperature bariation in 75% hydrogen batch annealing furnace (75% 수소 BATCH 소둔시에서의 코일 온도변화에 관한 연구)

  • Jeon, Eon-Chan;Kim, Soon-Kyung
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.11 no.2
    • /
    • pp.173-181
    • /
    • 1994
  • A Cold spot temperature control system for the batch annealing furnace has been estabilished in order to reduce energy consumption to improve productivity and stabilize the propertics of products. Therefore we confirmed a relation between annealing cycle time and atmospheric gas, variation of coil cold spot temperature with time during heating and actual temperature measurements at mid-width of each coil during heating and actual temperature measurements at mid-width of each coil during soaking. The results of the tempaeature variation effect on the batch annealing are as follows. 1) Heating time is reduced to one half with increasing atmospheric gas flow rate and changing of atmospheric gas component from HNx to Ax gas, and annealing cycle time is reduced to 2.7 times. 2) In case of short time healing, the slowest heating part is the center of B coil, in case of long time heating, the low temperature point moves from the center of coil to inside coil. And the temperature in this part is higher than other parts when cooling. When finished heating, the cold spot is located 1/3 of coil inside in case of HNx atmospheric gas. But center of coil in case of Ax atmospheric gas. 3) The outside of top coil is the highest temperature point when heating, which becomes the lowest temperature point when cooling. So, this point becomes high temperature zone at heating and low temperature zone at cooling, It has relation according to atmospheric gas component and flow rate. 4) Soaking time at batch annealing cycle determination is made a decision by the input coil width, and soaking time for quality homogenization of 1214mm width coil must be 2.5 hours longer than that of 914mm width coil for the same ciol weight. 5) Annealing cycle time with Ax atmospheric gas is extended 1 hour in of slow cooling during 5 hours in order to avoid rapid cooling.

  • PDF

Microstructure and Mechanical Properties of AA1050/AA6061/AA1050 Layered Sheet Aging-Treated after Cold Roll-Bonding (냉간접합압연 후 시효처리된 AA1050/AA6061/AA1050 층상판재의 미세조직 및 기계적 성질)

  • Sang-Hyeon Jo;Seong-Hee Lee
    • Korean Journal of Materials Research
    • /
    • v.33 no.12
    • /
    • pp.565-571
    • /
    • 2023
  • AA1050/AA6061/AA1050 layered sheet was fabricated by cold roll-bonding process and subsequently T4 and T6 aging-treated. Two commercial AA1050 sheets of 1 mm thickness and one AA6061 sheet of 2 mm thickness were stacked up so that an AA6061 sheet was located between two AA1050 sheets. After surface treatments such as degreasing and wire brushing, they were then roll-bonded to a thickness of 2 mm by cold rolling. The roll-bonded Al sheets were then processed by natural aging (T4) and artificial aging (T6) treatments. The as roll-bonded Al sheets showed a typical deformation structure, where the grains are elongated in the rolling direction. However, after the T4 and T6 aging treatments, the Al sheets had a recrystallized structure consisting of coarse grains in both the AA5052 and AA6061 regions with different grain sizes in each. In addition, the sheets showed an inhomogeneous hardness distribution in the thickness direction, with higher hardness in AA6061 than in AA1050 after the T4 and T6 age treatments. The tensile strength of the T6-treated specimen was higher than that of the T4-treated one. However, the strength-ductility balance was much better in the T4-treated specimen than the T6-treated one. The tensile properties of the Al sheets fabricated in the present study were compared with those in a previous study.