• Title/Summary/Keyword: 냉각탑성능

Search Result 42, Processing Time 0.024 seconds

Cooling Performance of Cooling Tower-Assisted Ground-Coupled Heat Pump (GCHP) System Applied in Hospital Building (병원 건물에 설치된 냉각탑 병용 지열 히트펌프 시스템의 냉방 성능)

  • Sohn, Byonghu;Lee, Doo-Young;Min, Kyung-Chon
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.12 no.1
    • /
    • pp.7-16
    • /
    • 2016
  • This paper presents the measurement and analysis results for the cooling performance of ground-coupled heat pump (GCHP) system using a cooling tower as a supplemental heat rejector. In order to demonstrate the performance of the hybrid approach, we installed the monitoring equipments including sensors for measuring temperature and power consumption, and measured operation parameters from May 1 to October 30, 2014. The results showed that the entering source temperature of brine returning from the ground heat exchanger was in a range of design target temperature. Leaving load temperatures to building showed an average value of $11.4^{\circ}C$ for cooling season. From the analysis, the daily performance factor (PF) of geothermal heat pumps ranged from 4.4 to 5.2, while the daily PF of hybrid GCHP system varied from 3.0 to 4.0 over the entire cooling season.

Program Development for the Prediction of Cooling Tower Performance (냉각탑 성능 예측을 위한 프로그램 개발)

  • Jung, Jaehyung;Jung, Jaihyun;Choi, Young Ki
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.26 no.3
    • /
    • pp.130-136
    • /
    • 2014
  • The present study is performed to set up the framework of cooling tower performance predictions. The performance of mechanical forced draft cooling tower is directly related to the state of a nuclear power plant system, such as the condenser and evaporator. The main parameters related to the state of systems are as follows : wet bulb temperature, dry bulb temperature and absolute humidity. The performance evaluation of cooling tower must be considered at the power plant design. In this study, the toolkit developed by the American Cooling Tower Industry association (CTI) has been used for the framework construction. In order to validate the framework, it is being applied to the cooling tower constructed for the U.S. Nuclear Power Plant. The test results have shown good agreements with the cold water temperature on the cooling tower performance curves provided by manufacturers.

A study on performance test of water heat storage type heat-pump system using cooling tower heat source (냉각탑을 이용한 축열식 히트펌프시스템의 성능측정에 관한 연구)

  • Lee, Sang-Hoon;Park, Hyo-Sik;Han, Woo-Yong;Kim, Uk-Jung
    • Proceedings of the SAREK Conference
    • /
    • 2008.06a
    • /
    • pp.1099-1104
    • /
    • 2008
  • Recent year, mean energy consumptions of a people are higher than other country. And international oil price became over 120 dollar. This energy environment as well as energy war. Maybe, the Meteorological Administration is going to enforce scorching heatwave special report system from that come summer. Besides, 2008 summer, maximum demand power is expected by 64,240,000kW. The electric power equipment reserve rate appeared in to keep 12.5% level. Chilled water storage system witch is one of electric load administration system. Heat pump system used cooling tower heat recovery is advantage that use is possible to summer in small a public bath building. In this paper, we suggest that heat pump system by heat recovery using cooling tower when it is heating operation of ambient air temperature. To apply cooling tower heat recovery heat pump to chilled water heat storage type and achieved performance evaluation about operation. As a result, performance of heat pump system that about 121% in cooling mode, 138% in heating mode higher than KEPCO standard. And heating operation possible to ambient air temperature about $23^{\circ}C$, which of appear cooling tower outlet temperature about $13^{\circ}C$.

  • PDF

Performance Comparison of Heat Transfer Plates for Cooling Tower Air Heater Through Numerical Analysis (냉각탑 공기가열기용 전열판의 수치해석적 성능 비교)

  • Lee, Eul-Jong;Kim, Jung-Sik;Kim, Nae-Hyun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.12
    • /
    • pp.5676-5683
    • /
    • 2012
  • In this study, numerical analysis was performed on three shapes of heat transfer plates (chevron, wave and dimple type), which are currently used as fillers of cooling towers. Results show that heat transfer rates per consumed power were larger for enhanced plates as compared with that of plain plate. Highest heat transfer coefficient was obtained for wave shape followed by chevron and dimple shape. For wave shape, cross corrugations induced significant mixing of fluids, which enhanced the heat transfer. Friction factor yielded a similar trend with the heat transfer coefficient. However, heat transfer rate and pressure drop per sheet was the largest for chevron shape, due to the largest heat transfer area per sheet.

Characteristics of Closed Circuit Cooling Tower with Multi Path on Cooling Water Inlet Conditions (냉각수 변화에 따른 멀티패스 밀폐식 냉각탑의 성능)

  • Shim, Gyu-Jin;Baek, Seung-Moon;Moon, Choon-Geun;Yoon, Jung-In;Kim, Eun-Pil;Kwon, O-Ick
    • Proceedings of the SAREK Conference
    • /
    • 2008.06a
    • /
    • pp.597-602
    • /
    • 2008
  • The experiment of performance about closed-wet cooling tower(CWCT) was conducted in this study. The test section has the cooling water that flows from top part of a heat exchanger that has an entrance of cooling water with one and multi path. The heat exchanger consists of 15.88mm tubes with ten rows and ten columns and staggered arrangement. In this experiment, heat and mass transfer coefficients and range are calculated with variations of cooling water and path. The results indicated that operating CWCT using two path have the high values of heat and mass transfer coefficients and range than one path.

  • PDF

Numerical study for performance analysis and design of a counterflow type cooling tower (대향류형 냉각탑에 대한 설계 및 성능해석을 위한 수치해석적 연구)

  • 이상윤;이정희;최영기;유홍선
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.10 no.5
    • /
    • pp.535-549
    • /
    • 1998
  • A numerical study for performance analysis of a counterflow type forced draft tower and natural draft cooling tower has been performed based on the method using the finite volume method with non-orthogonal body fitted and non-staggered grid system. For solving the coupling problem between water and air, air enthalpy balance, moisture fraction balance, water enthalpy balance, and water mass balance equations are solved with Navier-Stoke’s equations simultaneously. For the effect of turbulence, the standard k-$\varepsilon$ turbulent model is implied in this analysis. The predicted result of the present analysis is compared with the experimental data and the commercial software result to validate the present study, The predicted results show good agreement with the experimental data and the commercial software result. To investigate the influence of the cooling tower design parameters such as approach, range and wet bulb temperature, parametric studies are also peformed.

  • PDF

An Experimental Study on the Cooling Tower of Plume Prevention and Performance Improvements (냉각탑 백연방지의 성능 향상에 관한 실험적 연구)

  • JEONG, SOON YOUNG;LEE, BYEONG CHEON;KIM, SUNG
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.30 no.6
    • /
    • pp.578-584
    • /
    • 2019
  • The occurrence of white plume in the cooling tower is phenomenon that the steam in the air through the cooling tower fan is condensed again by the cold ambient air to become saturated moist air. Accordingly, this can cause many problems like spoiling landscape around the cooling tower, odor of ambient air, falling accident by frozenness in the winter, and traffic accident, etc. This study was to install the heat exchanger in the inside of the cooling tower in order to prevent the white plume phenomenon in the cooling tower without affecting the performance of cooling tower. In addition, this study was to discharge the part of cooling water into the atmosphere through the recirculation of heat exchanger after creating dry air by heating the saturated moist air to the dew point temperature. At that time, this study was to conduct the experimental study in order to secure the optimal design data to prevent the white plume in the cooling tower because it checked the dry·moist temperature and relative humidity in the inside·outside of cooling tower on the moist air, and evaluated the performance of the heat exchanger.

A Trend of Infra Structure Establishment and Method of Performance Evaluation for Cooling Tower (냉각탑 성능평가 방법 및 관련 설비구축 현황)

  • 윤재호;김종하;권오경
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.28 no.3
    • /
    • pp.405-412
    • /
    • 2004
  • 최근 우리나라의 경제 발전에 따른 산업 규모가 총체적으로 증가함으로써 그에 따른 산업용수의 사용량이 크게 증가하고 있다. 산업용수 사용량의 증가는 제한된 수자원의 부족과 방류 산업용수에 의한 수질오염 등의 문제가 발생하게 된다. 이러한 문제점을 해결하기 위해서는 산업용수중 약70%를 차지하는 각종 냉각수의 재이용이 필요하다.(중략)

Development of an Axial F.R.P. Fan for Cooling Tower (냉각탑용 축류형 F.R.P. 팬의 개발)

  • Oh, Keon-Je;Kim, Sun-Sook
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.19 no.10
    • /
    • pp.735-741
    • /
    • 2007
  • An axial F.R.P. fan model for cooling tower is developed. The fan is designed using the equations for one dimensional inviscid flow through the fan blade. Fan shape is swept forward with a parabolic function. Calculations of the three dimensional turbulent flow around the fan are carried out to investigate performance of the fan. Data of the total pressure rise and hydraulic efficiency can be obtained for the various setting angles. Calculated values of the total pressure rise and hydraulic efficiency at the design point are less than those of the design specification. The prototype of the F.R.P. fan is made by laminating of the fiberglass and epoxy resins on the mold of fan shape.