• Title/Summary/Keyword: 내하력평가

Search Result 149, Processing Time 0.021 seconds

Wheel Load Distribution of Simply Supported Reinforced Concrete Slab Bridge (철근콘크리트 단순 슬래브 교량의 윤하중분포폭에 관한 연구)

  • 오병환;신호상;한승환
    • Magazine of the Korea Concrete Institute
    • /
    • v.10 no.3
    • /
    • pp.125-134
    • /
    • 1998
  • 최근에 수행된 일련의 철근콘크리트 슬래브 교량의 파괴시험의 결과 비록 교량의 노후화되었다 하더라도 내하력은 설계하중보다 더 크게 나타나고 있다. 본 연구에서는 철근콘크리트 슬래브 교량의 이런 높은 내하능력을 보이는 여러 가지 원인들 가운데 가장 큰 영향을 줄 것으로 예상되는 슬래브 교량의 하중분배거동에 대한 연구를 수행하였다. 철근콘크리트 슬래브 교량의 윤하중분포폭에 영향을 미치는 주요 변수들에는 지간길이, 교량폭, 단부보, 하중형태 및 지점조건이 있다. 본 연구결과에 의하면 지간길이와 교폭에 따라 현행의 윤하중분포폭은 과소 혹은 과대 평가되고 있다. 이들 각 변수들에 대한 포괄적인 유한요소 해석과 분석을 통하여 철근콘크리트 슬래브 교량의 윤하중분포폭을 도출하였고 이들 결과들을 비선형 회귀분석을 통하여 슬래브 교량의 윤하중분포폭의 예측 및 설계식을 제안하였다. 본 연구에서 제안된 윤하중분포폭의 식은 철근콘크리트 슬래브 교량의 보다 정확한 설계 및 합리적인 내하력 산정시 매우 효율적으로 사용될 것으로 사료된다.

Load Carrying Capacity Evaluation of Composite PC Girder Bridges Based on the System Identification (구조특성확인기법에 의한 PC교의 내하력평가)

  • Kim, Kee-Dae
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.8 no.4
    • /
    • pp.205-212
    • /
    • 2005
  • This paper presents the application of system identification approaches for the load carrying capacity evaluation of composite PCI girder bridges based on the result of field test. For these problems, the moment of inertia of cross-sectional area and the natural frequency of bridge were used as structural parameters, the SAP2000 program for the structural analysis and the SLP method for the minimum error. As a result, it is found that the proposed algorithm for this study appears applicable to real structures with reasonable complexity. It is shown that the introduction of approximate quadratic equations is more realistic and timesaving than the common methods.

  • PDF

Assessment of Safety and Load Carrying Capacity of Aged Jacket-Typed Dolphin by Ship-Impact Test (선박접안시험을 통한 자켓식 돌핀부두의 내하력 평가 방법 연구)

  • Jo, Byung-Wan;Kwon, Oh-Hyuk
    • Journal of Ocean Engineering and Technology
    • /
    • v.12 no.3 s.29
    • /
    • pp.9-18
    • /
    • 1998
  • An improved evaluation method of load-carrying capacity for the large-scaled offshore structures, which subjected to the axial force and bending moments simultaneously at the piles, was suggested with reliability analysis and advanced working stress method. Reliability analysis requires the fracture probability and safety factor(${beta}$) for each of forces and the load-carrying capacity due to combined action of axial force and bending moments from $P_n - {beta}$ Curve. The combined equation due to those forces, which suggested by the Korean Specification for the marine structure, was derived for the advanced working stress method and applied to evaluate the load-carrying capacity of jacket-type dolphin piers.

  • PDF

Estimation of Shear Carrying Capacity on Concrete Beams, Reinforced with FRP Rods (FRP Rods로 보강한 콘크리트 보의 전단 내하력의 평가)

  • 최익창;연준희;고재용
    • Journal of Ocean Engineering and Technology
    • /
    • v.18 no.1
    • /
    • pp.63-68
    • /
    • 2004
  • The purpose of this study is to estimate the contribution of concrete and shear reinforcement, in shear carrying capacity, on concrete beams, reinforced with steel and/or FRP rods. The experimental tests for 12 concrete beams, reinforced with steel and/or FRP rods, are carried out. Experimental parameters includes the mechanical properties of reinforcements in shear and bending, and the ratio of shear reinforcement. This study compares the experimental results of shear carrying capacity in concrete beams, reinforced with steel and/or FRP rods, with the proposed equations. According to the experimental results, the effect of the concrete in concrete beams reinforced with FRP rods is decreased with decreasing Young's modulus of longitudinal tensile reinforcement. This results from the large deflection of concrete beams reinforced with decreasing Young's modulus of longitudinal tensile reinforcement. Also, the contribution of shear reinforcement is smaller than the calculated value, using the truss analogy. This results from the fact that the stress redistribution is not exhibited after the break of shear reinforcement.

Reliability-Based Assessment of Safety and Residual Carrying-Capacity of Steel-Box Pedestrian Bridges (신뢰성에 기초한 강상형 보도육교의 안전도 및 잔존 내하력평가)

  • 조효남;최영민;이은철
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1996.04a
    • /
    • pp.202-211
    • /
    • 1996
  • A number of typical type of steel-box pedestrian bridges are constructed in the metropolitan highway or heavy traffic urban area. Although it has the advantage of speedy construction because of its simple structural form and prefabricated erection method, it has been reported that many of these bridges are deteriorated or damaged and thus are in the state such that it would give unsafe and uncomfortable feeling to pedestrians. In the paper, for the realistic assessment of safety and residual earring-capacity of deteriorated and/or damaged steel box pedestrian bridges, an interactive non-linear limit state model are formulated based on the von Mises' combined stress yield criterion. It is demonstrated that the proposal model is effective for the reliability-based safety assessment and residual carrying-capacity evaluation of steel-box pedestrian bridges. In addition, this study suggests an effective and practical field load test method for pedestrian bridges.

  • PDF

Rating of A Plate Girder Bridge through Load Test (강거더교의 재하시험을 통한 내하력평가)

  • Juhn, Gui Hyun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.2 no.1
    • /
    • pp.89-97
    • /
    • 1998
  • This paper presents the results of the load test performed on a steel plate girder bridge and suggests the procedure of bridge rating through the load test. In general the girder bridge resist the loads as a complex three-dimensional structural system. Therefore the test results are analyzed for the longitudinal and the transverse response characteristics. The bending moments based on the beam analysis are compared with the measured values for longitudinal response characteristics. The lateral load distribution characteristics are assessed based on the load test results for transverse response characteristics. Also the rating of the test bridge is performed by using the suggested rating procedure which considers the actual response characteristics of the bridge. The suggested procedure can be used for understanding of actual response characteristics and evaluating load carrying capacity of the steel plate girder bridge.

  • PDF

A Study on the Load Carrying Capacity of the RC-T Bridge considering depth of crack (RC-T 교량의 균열을 고려한 내하력평가 연구)

  • Shim, Jae-Soo;Kim, Chun-Ho
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.3 no.2
    • /
    • pp.141-146
    • /
    • 1999
  • Recently, many existing bridges has been evaluated for maintenance and protection of collapse. In this study, field measurement according to truck loads tests on the reinforce concrete T beam bridge was carried out. Comparing the results of load test and structural analysis using the moments of inertia of gross section, crack section and effective section, and the moments of inertia of section considering depth of crack, it is conclude that the evaluation of load carrying capacity using the stress modification factor from structural analysis using the moments of inertia of gross section is more rational than using the other moments of inertia of sections.

  • PDF

A Study on the Stress Evaluation Equations for Steel Circular Column-to- Box Beam Connections (강재 상자형보-원형기둥 접합부의 응력평가식에 관한 연구)

  • Park, Yong Myung;Chang, Won Je;Hwang, Won Sup
    • Journal of Korean Society of Steel Construction
    • /
    • v.16 no.5 s.72
    • /
    • pp.505-517
    • /
    • 2004
  • This paper presented equations on the stress evaluation of steel frame pier connections that were composed of a box beam and a circular column. The existing equations, which transformed the circular column into an equivalent box column had some problems; they underestimated a shear lag stress as the joint angle decreased, and overestimated a shear stress as the joint angel increased. Therefore, FE analyses were performed with various parameters, such as joint angle(${\alpha}$), span length-width ratio(L/B), and circular column-to-box beam stiffness ratio(${\alpha}$), and new equations on stress evaluation were proposed based on FE analyses. Furthermore, material and geometric nonlinear analyses were performed to estimate ultimate strength and to confirm the validity of the proposed equations.

Long-Term Performance Evaluation of a GFRP Slab Bridge (GFRP 슬래브 교량의 장기성능 평가)

  • Ji, Hyo-Seon
    • Journal of Korean Society of Steel Construction
    • /
    • v.24 no.3
    • /
    • pp.349-360
    • /
    • 2012
  • This paper describes a detailed assessment of the structural safety, serviceability, capacity rating and long-term performance of a glass fiber-reinforced polymer (GFRP) slab bridge superstructure. This first all-GFRP slab bridge was installed in Korea on May 2002. The GFRP slab bridge is a simply supported, its length is 10.0 m, and is designed to carry two-lane traffic and has an overall width of 8.0m. The GFRP slab bridge is a sandwich structure with a corrugated core, fabricated by hand lay-up process with E-glass fibers and vinyl ester resins. The assessment of long-term performance for the GFRP slab bridge in 2004, 2011 includes a field load testing identical to that performed in 2002. The assessment indicates that the GFRP slab bridge has no structural problems and is structurally performing well in-service as expected. The assessment may provide a baseline data for the capacity ratings assessment of the GFRP slab bridge and also serve as part of a long-term performance of all-GFRP bridge superstructure.