이중편파 강우레이더는 차등반사도, 차등위상차, 비차등위상차 등 다양한 변수를 관측하여 호우의 공간적 규모, 호우를 구성하는 강수입자, 호우의 이동방향 등 종합적인 강우 정보를 제공한다. 이러한 이중편파레이더를 이용하면 단일편파레이더에 비해 보다 정량적인 강수 추정이 가능하다. 일반적으로 이중편파 강우레이더의 강우추정 관계식은 DSD 및 강우입자 모형을 기반으로 물리적으로 유도된다. 그러나 DSD는 호우 사상에 따라 그 양상이 다르며, 동일 호우 사상 내에서도 시공간적으로 변화가 크다. 이러한 DSD에 내포된 변동성은 결과적으로 레이더 강우에 큰 불확실성을 유발하게 된다. 이에 본 연구에서는 확률대응법을 이용하여 이중편파레이더의 강우추정 관계식을 추정하는 기법을 개발하고자 한다. 확률대응법은 실시간으로 강우추정 관계식의 매개변수를 추정하는 기법으로 단일편파레이더의 Z-R 관계식에 적용된 바 있다. 이러한 확률대응법을 이용하면 시공간적으로 변하는 DSD 등 호우사상의 개별적인 특징을 반영하여 호우사상별 강우추정 관계식의 매개변수를 실시간으로 결정할 수 있다. 따라서 본 연구에서는 이중편파레이더의 강우추정 관계식 중 R(KDP, Zdr), R(Zh, Zdr) 관계식을 위주로 매개변수를 이변량 확률대응법을 통해 추정하고, 기존의 강우추정 알고리즘 및 관계식의 레이더 강우 추정 결과와 비교를 통해 적용성을 평가하였다.
전통적인 신호제어모형은 다음의 두가지 결점을 내포하고 있다. 신호현시의 방법을 적정화하는 점이다. Rouphail(1990)은 전통적으로 행해온 신호주기와 녹색시간분할의 적정화에서 더 나아가 현시방법(signal timing)과 좌회전의 문제를 동시적으로 적정화 시킬 수 있는 모형을 제시한 바 있다. 그러나 Rouphail의 모형은 4개 현시에 국한되었고 현시방법(또는 현시의 선택)도 대단히 제약적이었다. 본연구는 이러한 Rouphail의 모형을 실제상황 에 보다 일반성있게 적용할 수 있도록 확장하는 연구이다. 여기서는 현시방법(또는 선택하는 현시으 형태와 수)을 확대시키고 또 연속변수와 이산변수를 동시에 적정화시키는 혼합정수선형계획법을 적용한 컴퓨터 모형을 구성하고 이를 사례 지역에 적용하엿다. 분석결과는 본 모형이 Rouphail 모형과 비교할 때 현시방법의 선택문제에 있어서 뿐만 아니라 좌회전(비보호, 보호 또는 혼합적)현시의 처리에 있어서 훨씬 더 효율적임을 확인하였다.
본 논문은 비균일 분포 수동형 견인 배열 센서를 사용하여 입사각 추정은 물론, 도 플러 주파수를 동시에 추정해내기 위한 기법을 제안한다. 균일 선형 센서 배열을 사용하는 전통적인 수동형 견인 센서 배열 처리기법은 센서간의 등 간격 구조 및 단순한 표본 과정에 기인하여 활용 분야의 한계성을 가지며, 주된 응용 분야가 방사된 음향신호의 입사각을 추 정하는데만 국한되어 사용될 수 있다는 문제점을 내포하고 있다. 이러한 사실 때문에, 수중 천해 환경 하에서 견인함의 등속 이동에 의해 발생하는 도플러 주파수들에 대한 정보는 목 표물에 대한 식별이나 음향신호 전달 경로의 모델링에 중요한 매개변수로 작용하며, 일반적 인 수동형 견인 센서 배열의 사용에 의한 처리 방식으로는 이러한 매개변수의 추출이 불가 능하게 된다. 본 논문은 이러한 제한성을 극복하고 방사 신호들의 개별적인 입사각 및 도플 러 주파수의 동시 추정을 가능케하도록 비균일 분포의 선형 센서 배열과 Sample Skipping 기법(Sample Skipping Technique;SST)을 적용한 새로운 형태의 수동형 견인 배열 센서 처 리 기법을 제안한다.
본 논문에서는 반도체의 제조공정 중 작동되는 건식 전공펌프에서 측정한 다중변수들의 통계적, 물리적 특성을 소개한다. 흡기부 및 배기부 압력과 부스터/드라이펌프의 소비전류와 같은 상태변수의 변위 분포는 2개 이상의 특징적인 구간으로 나뉘는 특성을 가지고 있다. 특히 흡기부 압력 데이터는 펌프의 성능상태를 직접적으로 나타내는 배기 속도를 유추할 수 있는 특성을 내포하고 있다. 이러한 관측을 통해 발견한 통계학적 특성을 나타내기 위해 적응형 인자모델(APM)을 이용한 진공펌프 시스템의 실시간 진단 기법을 개발하였다. 동시에 공정 중에 배기속도를 유추 할 수 있는 배기속도지표(PSI)를 제안하여 펌프의 성능 상태를 간접적인 방법으로 관찰하는 기법을 개발하여, 두 기법을 통한 진공펌프 시스템의 상태변화 진단 결과의 경향이 동일함을 확인하였다.
추계학적 강수발생 및 모의기법은 수문학적 모형의 입력 자료로써 널리 이용되고 있다. 그러나 Modified Bartlett-Lewis Rectangular Pulse(MBLRP)와 같은 추계학적 포아송 클러스터 강수생성 모형에 대해서 국부최적화 방법을 통한 매개변수 추정 방법은 매개변수의 신뢰성에 상당한 영향을 주는 것으로 알려져 있다. 최근에는 MBLRP 모형의 국부해추정 문제를 해소하기 위하여 Particle Swarm Optimization (PSO) 또는 Shuffled Complex Evolution developed at The University of Arizona (SCE-UA) 등 매개변수 추정 성능이 우수한 전역최적화기법이 도입되고 있지만, 제한된 매개변수 공간에서 항상 신뢰성 있는 매개변수 추정이 가능한 것은 아니다. 뿐만 아니라, 모형의 매개변수들이 갖고 있는 불확실성에 관한 연구는 아직 충분히 논의되지 않았다. 이러한 관점에서 본 연구는 Bayesian 기법과 연계한 MBLRP 모형을 개발하였으며 각 매개변수들의 사후분포(Posterior Distribution)를 유도하여 매개변수가 내포하는 불확실성을 정량적으로 평가하였다. 그 결과 관측값에 대한 시간단위 이하 강수발생 통계치를 효과적으로 복원하고 있음을 확인할 수 있었다.
본 논문은 비규칙 종속성을 가진 내포된 루프의 수행 속도를 향상시키기 위해서 Extended Three Region Partitioning Method 라는 효과적인 루프 분할 방법에 대해서 연구하였다. 본 논문에서 제안된 루프 분할 방법은 변수 재명명에 의해서 역종속성을 가진 내포된 루프를 제거한 후 네 개의 선중에 하나 혹은 그 이상의 적절한 선을 선택하는 알고리즘을 개발한다. 한 개의 선이 선택되면 선택된 선에 의해서 전체 영역은 두 개의 병렬지역으로 분할된다. 한 개 이상의 선이 선택되면 그 선들에 의해서 하나의 순차지역과 두 개의 병렬지역으로 분할한다. 제안된 분할 방법은 기존의 분할 방법보다 성능이 우수함을 성능 분석에서 보여준다.
OpenMP 프로그램의 수행 중에 발생하는 자료 경합과 같은 병행성 오류는 디버깅을 위하여 반드시 탐지되어야만 한다. 그러나 이를 탐지하는 것은 어려운 일이다. 접근사건의 발생 후 관계를 기반으로하는 경합 탐지 기법은 프로그램의 수행 중에 발생하는 스레드의 병행성 정보를 식별하기위한 레이블을 생성하고, 생성된 스레드의 레이블을 기반으로 공유변수에 접근하는 사건을 접근역사를 통해 감시함으로써 경합을 탐지한다. 이러한 경합 탐지의 방법에서 레이블 생성을 위한 NR 레이블링 기법은 병행성 정보생성 시에 지역자료 구조를 사용함으로써 병목현상이 발생하지 않으며, 접근역사에 저장하는 레이블의 크기가 상수 값을 갖는 공간적 효율성을 제공한다. 또한 부모스레드의 정보역사를 정렬된 리스트 형태로 가져 병행성 정보 비교 시에 이진탐색이 가능하므로 시간적 효율성을 가지는 우수한 기법이다. 그러나, NR 레이블링은 레이블의 생성시에 부모스레드의 정보역사를 유지하기 위해서 내포 병렬성의 깊이에 의존하는 시간적 비용이 요구된다. 본 논문에서는 부모스레드의 정보역사 유지를 위해 상수적인 시간 및 공간적 복잡도를 갖도록 NR 레이블링 기법을 개선한다. 합성 프로그램을 이용하여 실험한 결과에서 개선된 기법은 최대 병렬성의 증가에 따라 레이블의 생성과 유지시 기존의 기법보다 평균 4.5배 빠르고, 레이블링을 위해 평균 3배 감소된 기억공간을 요구하며, 내포 병렬성에 의존적이지 않음을 보인다.
유효우량 산정을 위하여 국내에서 주로 사용되는 모형은 NRCS-CN(Natural Resources Conservation Service - curve number) 모형으로, 유역의 유출 능력을 나타내는 유출곡선지수(runoff curve number, CN)와 같은 NRCS-CN 모형의 매개변수들은 관측 강우-유출자료 또는 토양도, 토지피복지도 등을 이용하여 유역마다 결정된 값이 사용되고 있다. 그러나 유역의 CN값은 유역의 토양 상태와 같은 환경적 조건에 따라 달라질 수 있으며, 이를 반영하기 위하여 선행토양함수조건(antecedent moisture condition, AMC)을 이용하여 CN값을 조정하는 방법이 사용되고 있으나, AMC 조건에 따른 CN 값의 갑작스런 변화는 유출량의 극단적인 변화를 가져올 수 있다. NRCS-CN 모형과 더불어 강우 손실량 산정에 많이 사용되는 모형으로 Green-Ampt 모형이 있다. Green-Ampt 모형은 유역에서 발생하는 침투현상의 물리적 과정을 고려하는 모형이라는 장점이 있으나, 모형에 활용되는 다양한 물리적인 매개변수들을 산정하기 위해서는 유역에 대한 많은 조사가 선행되어야 한다. 또한 이렇게 산정된 매개변수들은 유역 내 토양이나 식생 조건 등에 따른 여러 불확실성을 내포하고 있어 실무적용에 어려움이 있다. 따라서 본 연구에서는, 현재 사용되고 있는 강우손실 모형들의 매개변수를 추정하기 위한 방법을 제시하고자 하였다. 본 연구에서 제시하는 방법은 인공지능(AI) 기술 중 하나인 딥러닝(deep-learning) 기법을 기반으로 하고 있으며, 딥러닝 모형으로는 장단기 메모리(Long Short-Term Memory, LSTM) 모형이 활용되었다. 딥러닝 모형의 입력 데이터는 유역에서의 강우특성이나 토양수분, 증발산, 식생 특성들을 나타내는 인자이며, 모의 결과는 유역에서 발생한 총 유출량으로 강우손실 모형들의 매개변수 값들은 이들을 활용하여 도출될 수 있다. 산정된 매개변수 값들을 강우손실 모형에 적용하여 실제 유역들에서의 유효우량 산정에 활용해보았으며, 동역학파 기반의 강우-유출 모형을 사용하여 유출을 예측해보았다. 예측된 유출수문곡선을 관측 자료와 비교 시 NSE=0.5 이상으로 산정되어 유출이 적절히 예측되었음을 확인했다.
해안지역 지하수 개발에 있어 이익을 최대화하는 동시에 개발로 인한 부정적 영향을 최소화하는 4단계 확보방안이 제시되었다(박남식 등, 2004). 4단계 확보 방안 중 처음 3단계 방안에 대한 의사 결정 지원 도구역할을 할 수 있는 해안지하수 최적개발 모델이 개발되었다(박남식 등, 2003, 홍성훈, 2004). 개발된 모델은 대상 관정의 양수량과 위치에 대한 최적해 뿐만이 아니라 해수침투를 방지 및 제어에 대하여서도 최적화가 가능하다. 본 연구에서는 개발된 모델의 민감도 분석 결과를 다루고 있다. 민감도 분석의 목적은 불확실성을 내포하고 있는 대수층의 주요 매개변수, 경계조건 등에 의해 야기될 수 있는 모델의 불확실성을 정량화하는 것이다(Anderson 등, 1992). 따라서 민감도 분석은 모델의 특성에 대한 이해뿐만이 아니라 모델에 있어 매개변수들의 영향 및 거동을 고찰하는데 중요한 연구이다. 구축된 최적개발 모델을 이용하여 수리전도도, 함양율, 대수층 두께와 같은 주요 매개변수들이 최적양수량 그리고 관정의 최적위치에 미치는 영향을 고찰하였다. 그 결과 회수율은 함양율 증가에 따라 증가하는데, 높은 수리전도도에서는 함양율과 선형관계를, 낮은 수리전도도에서는 비선형관계를 보였다. 관정의 최적위치는 수리전도도에 가장 민감하였으며, 함양율 증가에 따라 해안으로 이동하였다. 마지막으로 최적개발량과 최적위치를 동시에 고려할 경우 최적개발량만을 고려한 경우보다 회수율이 향상되었다.
Altman의 연구(1965, 1977)나 Beaver의 연구(1986)와 같은 전통적 예측모형은 분석자의 판단에 따른 예측도가 높은 재무비율을 선정하여 다변량판별분석(MDA: multiple discriminant analysis), 로지스틱회귀분석 등과 같은 통계기법을 주로 이용해 왔으나 1980년 후반부터 인공지능 기법인 귀납적 학습방법, 인공신경망모형, 유전모형 둥이 부실기업예측에 응용되기 시작했다. 최근 연구에서는 인공신경망을 활용한 변수 및 모형개발에 관한 보고가 있다. 그러나 지금까지의 연구가 주로 기업의 재무적 비율지표를 고려한 모형에 치중되었으며 정성적 자료인 비재무지표에 대한 검증과 선정이 자의적으로 이루어져온 경향이었다. 또한 너무 많은 입력변수를 사용할 경우 다중공선성 문제를 유발시킬 위험을 내포하고 있다. 본 연구에서는 부실기업예측모형을 수립하기 위하여 정량적 요인인 재무적 지표변수와 정성적요인인 비재무적 지표변수를 모두 고려하였다. 재무적 지표변수는 상관분석 및 요인분석들을 통하여 유의한 변수들을 도출하였으며 비재무적 지표변수는 조직생태학내에서의 조직군내 조직사멸과 관련된 생태적 과정에 대한 요인들 중 조직군 내적요인으로 조직의 연령, 조직의 규모, 조직의 산업밀도를 도출하여 4개의 실험집단으로 분류하여 비재무적 지표변수를 보완하였다. 인공신경망은 다층퍼셉트론(multi-layer perceptrons)과 역방향 학습(back-propagation )알고리듬으로 입력변수와 출력변수, 그리고 하나의 은닉층을 가지는 3층 퍼셉트론(three layer perceptron)을 사용하였으며 은닉충의 노드(node)수는 3개를 사용하였다. 입력변수로 안정성, 활동성, 수익성, 성장성을 나타내는 재무적 지표변수와 조직규모, 조직연령, 그 조직이 속한 산업의 밀도를 비재무적 지표변수로 산정하여 로지스틱회귀 분석과 인공신경망 기법으로 검증하였다. 로지스틱회귀분석 결과에서는 재무적 지표변수 모형의 전체적 예측적중률이 87.50%인 반면에 재무/비재무적 지표모형은 90.18%로서 비재무적 지표변수 사용에 대한 개선의 효과가 나타났다. 표본기업들을 훈련과 시험용으로 구분하여 분석한 결과는 전체적으로 재무/비재무적 지표를 고려한 인공신경망기법의 예측적중률이 높은 것으로 나타났다. 즉, 로지스틱회귀분석의 재무적 지표모형은 훈련, 시험용이 84.45%, 85.10%인 반면, 재무/비재무적 지표모형은 84.45%, 85.08%로서 거의 동일한 예측적중률을 가졌으나 인공신경망기법 분석에서는 재무적 지표모형이 92.23%, 85.10%인 반면, 재무/비재무적 지표모형에서는 91.12%, 88.06%로서 향상된 예측적 중률을 나타내었다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.