• Title/Summary/Keyword: 내진 안전성

Search Result 238, Processing Time 0.024 seconds

Running Safety Analysis of Railway Vehicle Systems for Ground Vibration (철도 차량의 지반진동에 의한 주행안전성 평가)

  • Choi, Jun-Sung;Jo, Man-Sup;Lee, Jin-Moo
    • Tunnel and Underground Space
    • /
    • v.16 no.4 s.63
    • /
    • pp.288-295
    • /
    • 2006
  • In this study, dynamic behavior of the vehicles is analyzed, while the track is subjected to lateral vibrations due to earthquake and blasting load. A computer program(WERIA, Wheel Rail Interaction Analysis) is used, which can simulate dynamic responses of vehicles subjected to lateral vibrations. The analysis considers two types of vehicles: I.e. power cars of KTX and Busan subway train. It can also consider the interaction with sub-structures such as tracks and soil. The creep force module is considered, and the running safety of railway vehicles subjected to earthquake and blasting loading is studied. Based on the results of this study, the running safety of the vehicles can be confirmed against lateral vibration.

A Ultimate Shear Performance of Elastomeric Bearings (탄성받침의 극한전단성능)

  • Yoon, Hye-Jin;Kwahk, Im-Jong;Kim, Young-Jin
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.117-120
    • /
    • 2008
  • The bridge bearings are devices absorbing the displacements of the superstructure. KS F 4420 relative to the design of elastomeric bearings in Korea allows shear deformation up to 70% of total rubber height. For the elastomeric bearings to fulfill their shear function required in the design, the stability of allowable shear strain of elastomeric bearings relative to the shear failure should be guaranteed. Moreover considering the possibility that elastomeric bearings are applied to the seismic design together with isolation devices, elastomeric bearings is supposed to display higher shear performance. In this paper ultimate shear performance tests were performed. The measured ultimate shear strains were over 200%. Therefore an allowable shear strain provision becomes safe. But elastomeric bearings expected to show their performance in one united body reveled the separation of components near 200% shear strain. These separation in elastomeric bearing can cause unexpected impact or concentrated stress to bridge system considering to application of seismic design. Therefore provision relevant to separation problem is necessary.

  • PDF

Seismic Safety Analysis of Intake Tower with Hollow Inside Section (중공 단면을 갖는 취수탑의 내진 안전성 평가)

  • Bae, Jung-Joo;Kim, Yon-Gon;Lee, Jee-Ho;Han, Sang-Hoon
    • Journal of the Korean Society of Safety
    • /
    • v.24 no.2
    • /
    • pp.55-61
    • /
    • 2009
  • Seismic Safety Analysis of Intake Tower is very important because failure of intake tower may incur huge chaos on the modem society. Recently, there has been growing much concern about earthquake resistance of existing structures. This research demonstrates the dynamic fluid pressure calculation using added mass simulation. The actual safety evaluation has been conducted through not only the static analysis but also the dynamic analysis. According to the analysis results, the vibration incurred by earthquake may induce considerable damage to the hydraulic structure. Therefore, the appropriate design process out of exact calculation is quite necessary.

Effects of the Excitation Level on the Dynamic Characteristics of Electrical Cabinets of Nuclear Power Plants (진동수준이 원자력발전소 전기 캐비닛의 동특성에 미치는 영향)

  • Cho, Sung-Gook;Kim, Doo-Kie;Go, Sung-Hyuk
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.14 no.3
    • /
    • pp.23-30
    • /
    • 2010
  • Seismic qualification (SQ) is required prior to the installation of safety related electrical cabinets in nuclear power plants (NPPs). Modal identification of the electrical equipment is one of the most significant steps to perform SQ, and is an essential process to construct a realistic analytical model. In this study, shaking table tests were conducted to identify a variation of the dynamic characteristics of a seismic monitoring system cabinet installed in NPPs according to the excitation level. Modal identification of the cabinet has been performed by a frequency domain decomposition method. The results of this study show that the dynamic properties of the cabinet are nonlinearly varied according to the excitation level and the specimen behaves significantly in a nonlinear manner under safe shutdown earthquake motion in Korea. The main sources of the nonlinear behavior of the specimen have been judged by friction forces and geometrical nonlinearity rather than material nonlinearity. The nonlinear variation of the dynamic characteristics of the electrical cabinet might be accepted as an important fact that should be considered during the SQ of safety related equipment.

Seismic Design of Long Span Structures Based on Hysteric Energy Absorption Mechanism(1) (이력에너지흡수 원리를 이용한 대경간 구조물의 내진설계(1) -이선형 탄소성 이력거동에 의안 에너지 소산원리를 이용하는 방법-)

  • Cheong, Myung-Chae;Won, Sung-Dae
    • Journal of Korean Association for Spatial Structures
    • /
    • v.10 no.1
    • /
    • pp.85-93
    • /
    • 2010
  • This paper suggests a vibration control method long span structures with trussed roof. Basic concept of this method is based on the energy absorption through hysteresis loop of an elasto-plastic element. This element is attached on the top of the column supporting the roof. Two different types of roofs and three of earthquake waves are used in the investigation. It shows that this is very efficient method to reduce the seismic energy of roof member transferred from the column.

  • PDF

Seismic Performance of Precast Infill Walls with Strain-Hardening Cement Composite (변형경화형 시멘트 복합체를 사용한 프리캐스트 끼움벽판의 내진성능)

  • Kim, Sun-Woo;Jeon, Esther;Kim, Yun-Su;Ji, Sang-Kyu;Jang, Gwang-Soo;Yun, Hyun-Do
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.89-92
    • /
    • 2008
  • The seismic behavior of the lightly reinforced concrete frames (LRCFs) was controlled by the nonductile behavior of the critical regions. These critical regions require retrofit to improve the seismic behavior of the lightly reinforced concrete frames. Critical column end regions must be retrofit to increase the global ductility capacity. The objective of this research is to evaluate structural strengthening performance of lightly reinforced concrete frame with Strain hardening cement composite(SHCC) experimentally. The experimental investigation consisted of a cyclic load tests on 1/3-scale models of precast infill walls. Reinforcement detail of infill wall was variables in the experiment. The experimental results, as expected, show that the multiple crack pattern, strength, ductility and energy dissipation capacity are superior for specimen with SHCC infill wall due to bridging of fibers and stress redistribution in cement matrix.

  • PDF

Seismic Performance Improvement of Liquid Storage Tank using Lead Rubber Bearing (납고무받침을 이용한 액체저장탱크 내진성능향상)

  • Kim, Hu-Seung;Oh, Ju;Jung, Hie-Young
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.39 no.3
    • /
    • pp.441-449
    • /
    • 2019
  • Recently, interest in the seismic safety of structures is rising in South Korea due to the occurrences of earthquakes of 5.0 or greater magnitudes such as Gyeongju earthquake (September 2016) and Pohang earthquake (November 2017). In particular, the importance of living facilities that cause human injuries and property losses is more emphasized. Representative living facilities include gas and oil storage facilities and water tanks. In this study, the seismic performance of liquid storage tanks is improved by applying the lead rubber bearing, which is a seismic isolation method. The lead rubber bearing was designed considering the foundation of liquid storage tanks, and the general properties of the lead rubber bearing were verified through compression and shear tests using fabricated specimens. Furthermore, the behaviors of liquid storage tanks according to seismic and non-seismic isolations were analyzed through durability test, shaking table test and finite element analysis using ANSYS.

Probabilistic Seismic Risk Analysis of Breakwater Structures (방파제 구조물의 확률론적 지진위험도 분석)

  • Kim Sang-Hoon;Yi Jin-Hak;Kim Doo Kie
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.17 no.1
    • /
    • pp.32-40
    • /
    • 2005
  • Recent earthquakes over magnitude 5 in the eastern coast of Korea have aroused interests in the earthquake analyses and seismic design of breakwater structures. Most of earthquake analysis methods such as equivalent static analysis, response spectrum analysis, nonlinear analysis, and capacity analysis methods are deterministic and have been used for seismic design and performance evaluation of breakwater structures. However, deterministic methods are difficult to reflect one of the most important characteristics of earthquakes, i.e. the uncertainty of earthquakes. This paper presents results of probabilistic seismic risk assessment(PSRA) of an actual caisson type breakwater structure considering uncertainties of earthquake occurrences and soil properties. First the seismic vulnerability of a structure and the seismic hazard of the site are evaluated using earthquake sets and seismic hazard map, and then seismic risk of the structure is assessed.

Experimental Study on the Seismic Behavior Simulation of Modular Expansion Joint (모듈러 신축이음장치 지진거동 모사 실험적 연구)

  • Lee, Jung-Woo;Choi, Eun-Suk
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.26 no.5
    • /
    • pp.43-48
    • /
    • 2022
  • In order to evaluate the seismic performance of the modular expansion joint known for its large expansion allowance and remarkable durability, this study conducts seismic response analysis and seismic simulation test. The bridge selected for the seismic response analysis is a cable stayed bridge with main span length of 1,000m. Three artificial earthquake were generated with respect to the design response spectra of the Korean Standards (KS), AASHTO LRFD and Eurocode, and applied to the selected bridge. The seismic simulation tests reproduced the artificial earthquakes using dynamic hydraulic actuators in the longitudinal and transverse directions. The test results verified the durability and safety of the expansion joint in view of its seismic behavior since abnormal behavior or failure of the expansion joint was not observed when the artificial earthquake waves were applied in the longitudinal direction, transverse direction and both directions.

지반진동 연구 및 기술동향

  • 지반진동기술위원회
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2004.03a
    • /
    • pp.381-395
    • /
    • 2004
  • 최근 들어 우리나라도 지진에 결코 안전한 지역이 아니라는 의식이 확산되면서 지반진동 및 내진 설계에 대한 학계와 업계의 관심이 고조되고 있다. 현재까지 학계에서는 꾸준한 연구를 거듭하여 이제는 이 분야의 연구를 위한 기반이 어느 정도 구축되고 있는 것으로 사료된다. 그러나 향후 이 분야의 기술자립도를 현재 수준보다 높은 수준으로 제고하고, 우리 실정에 걸맞은 설계기준 등을 제시할 수 있는 수준의 연구 성과를 얻기 위해서는 아직도 꾸준한 연구와 투자가 계속 되어야 할 필요가 있다.(중략)

  • PDF