• Title/Summary/Keyword: 내진성능수준

Search Result 114, Processing Time 0.023 seconds

A New Methodology for Seismic Capacity Evaluation of Low-rise R/C Buildings (비선형요구내력스펙트럼을 이용한 저층 R/C 건물의 내진성능 평가법)

  • Lee, Kang Seok
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.15 no.3
    • /
    • pp.106-115
    • /
    • 2011
  • This study proposed a new methodology for seismic capacity evaluation of low-rise reinforced concrete (RC) buildings based on non-linear required spectrum. In order to verify the reliability of the proposed method, relationships between results obtained using the proposed method and the non-linear dynamic analyses were investigated. Compared with the seismic protection index (Es=0.6) defined in the Japanese Standard, the applicability of the method was also estimated. Research results indicate that the method proposed in this study compares reasonably well with the detailed evaluation methods. Using the seismic evaluation method developed in this study, the seismic capacity category and earthquake damage degree of low-rise RC buildings corresponding to a specific earthquake level can be effectively estimated.

Strengthening of an Existing Bridge for Achievement of Seismic Performance (내진성능 확보를 위한 기존교량의 보강)

  • Kook, Seung-Kyu
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.22 no.2
    • /
    • pp.181-187
    • /
    • 2009
  • After introduction of the earthquake resistant design code, it is required to achieve seismic performance of existing bridges as well as earthquake resistant design of new bridges. The achievement of seismic performance for existing bridges should satisfy the no collapse requirement based on the basic concept of earthquake resistant design, therefore, various methods with different strengthening scale should be suggested according to bridge types and importance categories. At present for typical bridges, most studied and applied strengthening methods are bearing change, pier strengthening and shear key installation for improvement of seismic performance. In this study a typical existing bridge, for which earthquake resistant design is not considered, is selected as an analysis bridge. Design changes are carried out to satisfy the no collapse requirement by way of the ductile failure mechanism and seismic performances are checked. It is shown that the seismic performance of existing bridges can be achieved by way of redesign of bridge system, e.g. determination of pier design section for substructure and change of bearing function for connections between super/sub-structure.

Study on Seismic Performance Evaluation and Verification of Seismic Safety for Power Cable Tunnels (개착식 전력구의 내진성능 평가 및 내진 안전성 검증)

  • Hwang, Kyeong-min;Chun, Nak-hyun;Chung, Gil-young;Park, Kyung-sung
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.6 no.4
    • /
    • pp.439-445
    • /
    • 2020
  • In this paper, the seismic performance evaluation was performed on 100 existing open-cut power cable tunnels, including ones that did not consider seismic design, in order to verify that the government's demand level (seismic special grade, 0.22 g). The results of the seismic performance evaluation show that most of the tunnels have seismic performance of 0.3 to 1 g, satisfying the level of the seismic special grade and securing the seismic safety. Meanwhile, the earthquake response analysis and structural test were performed to verify the validity of the method and the results of the seismic performance evaluation of the tunnels by the response displacement method, and to verify their seismic safety. As a result, the relative displacement due to the response displacement method under the 0.22 g earthquake was conservative than the results of the earthquake response analysis, and the results of load-displacement curves and response modification coefficient calculation by real scale structural tests showed the safety of the tunnels.

Improvement of Seismic Performance of Existing Bridges using Isolation (지진격리장치를 이용한 기존 교량의 내진성능 향상)

  • 한경봉;김민지;박선규
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.8 no.2
    • /
    • pp.9-17
    • /
    • 2004
  • The seismic performance evaluation and retrofit process are very important in old existing bridges. If the result is not appropriate. then a retrofit process are required. Among various retrofit methods, the seismic isolation is a very useful method. because it can be applied by replacing old bridge bearings. In this study, the effectiveness of seismic isolation is rationally verified. For this purpose, two seismic isolations used widely are selected and non-linear static and dynamic analyses are performed. The responses of existing bridges are compared with those of retrofited bridges by seismic isolation bridge for earthquake of target level. and seismic performances are evaluated.

Shaking Table Test for Seismic Performance Evaluation of Non-Seismic Designed Wall-Type Apartment (내진설계 되지 않은 공동주택의 진동대 실험에 의한 내진성능 평가)

  • Chung, Lan;Lee, Joung-Woo;Park, Tae-Won
    • Journal of the Korea Concrete Institute
    • /
    • v.18 no.6 s.96
    • /
    • pp.721-728
    • /
    • 2006
  • Earthquakes are reported thai building structures have been colossal damaged, but before 1988 designed structures which were not applicate seismic design code have no seismic performance. Especially, for the apartment structures were indicated that it have no resist wall element of earthquake before 1988 designed structures. We have to evaluate for seismic performance this structures, therefore it will be retrofitted for seismic index sufficient structures. We performed seismic performance evaluation for model structures by MIDAS which is general structure analysis software. In this study, it was performed shaking table test to evaluate model structure which is reinforcement concrete and 5 floors for seismic performance index. We made specimens by similar's law and tested shaking table test. In the shaking table test it is not performed prototype model test because of space and equipment condition. So we had made scale-down model for 1/5 by similar's law. That's why it needs for the evaluation of performance. However, it is not possible to do an experiment of prototype owing to the shortage of space and the limit of an experimental instrument in the shaking table test. Then, modeling and reducing the part of prototype do the experiment. In this experiment a shaking table test is done and seismic performance of model structures is evaluated by using similitude laws for scale down specimen. As a result it is proved that non-seismic design structures need to retrofit since seismic performance shows life safe grade in 0.12g of an earthquake.

Seismic Evaluation of Existing Buildings Based on Fuzzy Inference System (퍼지추론방식에 의한 기존시설물 내진성능평가)

  • 김남희;홍성걸;장승필
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.5 no.2
    • /
    • pp.1-11
    • /
    • 2001
  • 내진성능평가 시스템은 구조시스템의 합리적인 분류, 적절한 평가 기준, 그리고 종합적인 평가방법을 포함하여야한다. 외국의 현행 내진성능 평가방법은 데이터의 수집과 주요 평가 항목을 위한 약산식 그리고 평가 점수를 이용하여 전문가의 판단에 근거한 평가 방법을 제시하고 있다. 본 연구는 국내 건축구조물에 예비 내진평가 방법에 중점을 두고 퍼지추론 시스템에 근거한 내진평가방법의 전형을 개발한다. 평가항목의 위계는 건무의 수직, 수평방향을 불규칙성, 비대칭성, 여용성, 그리고 건물 연한을 포함한 전체적인 특성과 부재 단계에서의 상세한 평가 항목으로 구성한다. 퍼지추론방법에 대한 기존의 연구결과를 근허가혀 이용한 내진성능 평가방법에 적절히 적용하기 위하여 4가지 주요 모듈을 설정한다. (1) 퍼지 입력 (2) 퍼지에 근거한 규칙기반 (3) 퍼지추론, 그리고 (4) 퍼지출력으로 구성된다. 더욱이 개별적인 성능 수준에 종합적인 평가지수를 끌어내기 위하여 퍼지추론방법을 적용하였다.

  • PDF

Seismic Response Estimation of Water Extinguishing Facilities using Shaking Table Tests (진동대 실험을 통한 수계 소화설비의 지진응답평가에 관한 연구)

  • Nam, Min-Jun;Park, Seung-Hee;Kim, Dong-Joon;Choi, Jun-Sung
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.16 no.4
    • /
    • pp.9-18
    • /
    • 2012
  • In this study, a shaking table test was performed for the evaluation of water extinguishing facilities. Water extinguishing facilities, such as a general pipe, a seismic pipe (Loof type) and a pump, were used in the experiment. This captured the dynamic characteristics of water extinguishing systems by earthquake records at El-Centro with a 50%, 70%, 100%, 120% level. As a result, seismic type facilities have excellent seismic performance compared to general facilities. By using the acceleration response spectrum, not only is the performance evaluation of water extinguishing facilities able to be determined, but also the deformation of facilities in low earthquake levels can be known. This proposed approach can determine the seismic performance evaluation of water extinguishing facilities and verify seismic performance criteria.

Displacement-based Seismic Assessment and Rehabilitation of Asymmetric Wall Structures (비대칭 벽식 구조지 변위기초 내진성능평가 및 보강)

  • Hong, Sung-Gul;Ha, Tae-Hyu
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.9 no.3 s.43
    • /
    • pp.23-32
    • /
    • 2005
  • Torsional behavior of eccentric structure under seismic leading may cause the stress and/or deformation concentration, which arouse the failure of the structure in an unexpected manner. This study suggests D-R relationship which shows the overall displacement and rotation of the system based on the ultimate displacement capacity of the each lateral load resistant member. Using the suggested D-R relationship and displacement spectrum, the seismic assessment is conducted and verified in comparison with the time history analysis result. Multi-level seismic assessment Is considered which takes multiple seismic hazard levels and respective performance levels into account. Finally, based on the seismic assessment result, seismic rehabilitation process is presented. In this research, two rehabilitation methods are considered. One is done by means of stiffening/strengthening the seismic resistant members, and the other is based on the member ductility. Especially, in the first method, to optimize the rehabilitation result, the rehabilitation problem is modeled as an optimization problem, and solved using BFGS quasi-Newton optimization method.

Comparative Seismic Design of Bridges with Lead Rubber and Steel Bearings for the Ductile Failure Mechanism (지진격리교량과 강재받침교량의 연성파괴메커니즘에 의한 비교내진설계)

  • Kook, Seung Kyu
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.1A
    • /
    • pp.173-181
    • /
    • 2006
  • Many isolated bridges are designed and constructed after the introduction of the seismic design. However those bridges designed in engineering fields have unnecessarily high serviceability limit and brittle failure mechanism, which do not satisfy the seismic design concept. Such design results are due to the excessive substructure stiffness of the conventional design method as well as the misunderstanding of the seismic design method. In this study an isolated bridge designed with the conventional design method is selected and the same bridge with steel bearings is modelled for the comparative seismic design. From the comparison, the seismic design procedures satisfying the required performance levels are provided for the two bridges. It is confirmed that the isolated bridge requires more complicated design procedure with trial and error methods and reanalyses but provides higher serviceability limit compared to the bridge with steel bearings. However, because the required serviceability limit can also be obtained by adjusting substructure stiffness, it is a resonable seismic design process that an isolated bridge is to be considered as an alternative design when the ductile failure mechanism is not obtained with a bridge with steel bearings.

Seismic Behavior Characteristics of Spherical Storage Tanks Supported by Inelastic Members and Performance-Based Seismic Design Based on Reliability (비선형지지구조 저장탱크의 지진거동 특성과 신뢰도 기반의 성능기반 내진설계)

  • Jang jeong min;Sun chang ho;Kim ick hyun;Choi jeong in
    • Journal of the Korean Institute of Gas
    • /
    • v.27 no.4
    • /
    • pp.27-33
    • /
    • 2023
  • In a petrochemical plant, various mechanical equipments and structures are interconnected to ensure operability. Since the production activities of petrochemical plants have a great impact on the national economy, it is very important to maintain not only structural safety but also the operability of the facilities. However, the current seismic design standards present the design requirements of facilities mainly aimed at preventing collapse, and do not provide the requirements for securing operability of facilities. Depending on the behavioral characteristics of the facility, operability of the facility can be secured by seismic performance levels other than the collapse prevention level, so it is necessary to present seismic design methods that can apply various seismic performance levels. Spherical (ball) storage tanks are supported by columns and braces and exhibit complex nonlinear behavior because of buckling and yielding of support members. In this study, nonlinear seismic behavior characteristics were statistically analyzed and a new performance-based seismic design method was proposed based on them.