• 제목/요약/키워드: 내용 기반 음악 특징 추출

검색결과 21건 처리시간 0.022초

한국 전통음악 (국악)에 대한 자동 장르 분류 시스템 구현 (An Implementation of Automatic Genre Classification System for Korean Traditional Music)

  • 이강규;윤원중;박규식
    • 한국음향학회지
    • /
    • 제24권1호
    • /
    • pp.29-37
    • /
    • 2005
  • 본 논문은 한국의 전통 음악, 즉 국악 장르를 자동으로 분류하는 시스템을 제안한다. 제안된 시스템은 입력 음악의 내용기반 분석을 통하여 궁중음악, 풍류방음악, 민속성악, 민속기악, 불교음악, 무속음악 등 6가지 장르중 하나로 자동분류하여 해당 음악의 장르 결과를 보여준다. 국악 장르 분류에 사용된 내용기반 알고리즘은 크게 음악의 특징 벡터 추출 그리고 장르 분류를 위한 패턴인식 과정 2가지로 구성된다. 음악의 특징 벡터 추출은 디지탈 신호 처리기술을 이용하여 해당 음악의 spectral centroid, rolloff, flux 등 STFT (Short Time Fourier Transform) 기반의 특징 계수들과 MFCC (Mel frequency cepstral coefficient), LPC (Linear predictive coding) 등의 계수들을 구한 후 SFS (Sequential Forward Selection) 최적 특징 벡터 열을 선별하여 사용하였으며 패틴 분류 알고리즘으로는 k-NN (k -Nearest Neighbor), Gaussian, GMM (Gaussian Mixture Model), SVM (Support Vector Machine) 분류기를 사용하였다. 특히 본 연구에서는 입력 질의의 패턴 (혹은 구간) 변화에 따른 시스템의 불확실성을 개선하기 위하여 MFC (Multi Feature Clustring) 방법을 이용하여 DB를 구축하였다. 모의실험 결과 k-NN 과 SVM 분류기 모두 $97{\%}$ 이상의 장르 분류 성공률을 보였으나, SVM 이 k-NN에 비해 약 3배 이상의 빠른 분류 성능을 가지고 있음을 확인하였다.

리듬정보를 이용한 악보생성 시스템 구현 (Implementation of Musical Note Generation System using Rhythm Information)

  • 소두석;최재원;이종혁
    • 한국정보통신학회논문지
    • /
    • 제7권6호
    • /
    • pp.1210-1216
    • /
    • 2003
  • 본 논문에서는 기존의 오디오검색 관련 시스템의 텍스트 정보기반의 음악 검색의 한계를 극복하기 위해 사용자가 입력한 음악데이터에서 리듬정보를 추출해 내어 데이터 베이스 내의 음악 정보 검색이 가능하게 하는 내용기반 검색 시스템의 일종인 리듬 추출 시스템을 제안하였다. 본 논문에서는 음악정보에서 리듬의 특징 정보를 추출하여 특정 파라미터를 생성하고 신경회로망을 사용하여 악기 인식을 통한 악보생성 시뮬레이션을 하였다.

Pitch 히스토그램을 이용한 내용기반 음악 정보 검색 (Content-based Music Information Retrieval using Pitch Histogram)

  • 박만수;박철의;김회린;강경옥
    • 방송공학회논문지
    • /
    • 제9권1호
    • /
    • pp.2-7
    • /
    • 2004
  • 본 논문에서는 내용 기반 음악 정보 검색에 MPEG-7에 정의된 오디오 서술자를 적용하는 방법을 제안한다. 특히 Pitch 정보와 timbral 특징들은 음색 구분을 용이하게 할 수 있어 음악 검색뿐만 아니라 음악 장르 분류 또는 QBH(Query By Humming)에 이용 될 수 있다. 이러한 방법을 통하여 오디오 신호의 대표적인 특성을 표현 할 수 있는 특징벡터를 구성 할 수 있다면 추후에 멀티모달 시스템을 이용한 검색 알고리즘에도 오디오 특징으로 이용 될 수 있을 것이다. 본 논문에서는 방송 시스템에 적용하기 위해 영화나 드라마의 배경음악에 해당하는 O.S.T 앨범으로 검색 범위를 제한하였다. 즉, 사용자가 임의로 검색을 요청한 시점에서 비디오 컨텐츠로부터 추출한 임의의 오디오 클립만을 이용하여 그 컨텐츠 전체의 O.S.T 앨범 내에서 음악을 검색할 수 있도록 하였다. 오디오 특징 백터를 구성하기 위해 필요한 MPEG-7 오디오 서술자의 조합 방법을 제안하고 distance 또는 ratio 계산 방식을 통해 성능 향상을 추구하였다. 또한 reference 음악의 템플릿 구성 방식의 변화를 통해 성능 향상을 추구하였다. Classifier로 k-NN 방식을 사용하여 성능평가를 수행한 결과 timbral spectral feature 보다는 pitch 정보를 이용한 특징이 우수한 성능을 보였고 vector distance 방식으로는 특징들의 비율을 이용한 IFCR(Intra-Feature Component Ratio) 방식이 ED(Euclidean Distance) 방식보다 우수한 성능을 보였다.

음악의 클라이맥스 추출을 이용한 내용 기반 장르 분류 (Content-Based Genre Classification Using Climax Extraction in Music)

  • 고일주;정명범
    • 한국멀티미디어학회논문지
    • /
    • 제10권7호
    • /
    • pp.817-826
    • /
    • 2007
  • 기존의 음악 분류 연구는 음악에서 임의 20초 구간 또는 $40%{\sim}45%$ 지난 부분으로부터 20초 구간을 얻은 후 여러 가지 신호적 특징을 추출하여 장르 분류에 사용해왔다. 본 논문에서는 기존 연구의 성공률을 높이기 위해 음악의 클라이맥스 구간을 추출하여 장르 분류하는 것을 제안한다. 음악은 도입과 진행, 클라이맥스 부분으로 나뉘며, 클라이맥스는 음악이 강조하는 부분으로서 그 음악의 특징을 가장 잘 나타낸다. 즉, 음악을 분석하거나, 분류할 때 클라이맥스 부분을 이용하면 보다 효과적인 결과를 얻을 것이다. 음악의 클라이맥스는 FFT를 이용하여 박자와 마디 정보를 얻은 후 마디별 파형 집중도로부터 추출할 수 있다. 논문에서는 기존의 연구에 사용된 방법과 제안한 방법인 클라이맥스를 이용하여 장르 분류 실험을 하였다. 기존 방법은 47%의 성공률을 보이는 반면 제안한 방법은 55% 향상된 성공률을 얻을 수 있었다.

  • PDF

음악 특징점간의 유사도 측정을 이용한 동일음원 인식 방법 (Same music file recognition method by using similarity measurement among music feature data)

  • 성보경;정명범;고일주
    • 한국컴퓨터정보학회논문지
    • /
    • 제13권3호
    • /
    • pp.99-106
    • /
    • 2008
  • 최근 다양한 분야에서(웹 포털, 유료 음원서비스 등) 디지털 음악의 검색이 사용되고 있다. 기존의 디지털 음악의 검색은 음악 데이터에 포함된 자체 메타 정보를 이용하여 이루어진다. 하지만 메타 정보가 다르게 작성되었거나 작성되지 않은 경우 정확한 검색은 어렵다. 요즘 이러한 문제의 보완 방안으로 음악자체를 이용하는 내용기반정보 검색 기법에 대한 연구가 이루어지고 있다. 본 논문에서는 음악의 파형에서 추출된 특징 정보간의 유사도 측정을 통하여 동일음원을 인식하는 방법에 대해 논하고자 한다. 디지털 음악의 특징 정보는 단순화시킨 MFCC (Mel Frequency Cepstral Coefficient)를 이용하여 음악의 파형으로부터 추출하였다. 디지털 음악간의 유사도는 Vision 및 Speech Recognition 분야에서 사용되던 DTW (Dynamic Time Warping) 기법을 활용하여 측정하였다. 제안된 동일 음원 인식 방법의 검증을 위한 같은 장르에서 무작위 추출된 1000곡에서 시행한 500번의 검색은 모두 성공했다. 검색에 사용된 500개의 디지털 오디오는 60개의 디지털음원을 압축방식과 비트율을 다르게 조합하여 만들었다. 실험의 결과로 DTW을 이용한 유사도 측정법이 동일음원을 인식할 수 있음을 증명하였다.

  • PDF

음파 분석을 이용한 사용자 적응형 음악 추천 시스템 (User adapted music recommendation System using sound wave)

  • 김동문;이지형
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2006년도 가을 학술발표논문집 Vol.33 No.2 (B)
    • /
    • pp.250-253
    • /
    • 2006
  • 최근 들어 음원 협회의 항소로 인해 음악 파일을 무료로 다운 받을 수 없게 되었다. 이로 인해, 유료 음악 사이트의 사용이 증가되었고,수익성이 커지고 있다.하지만 수요가 커진 것에 비해, 대부분의 음악 사이트들의 서비스는 음악 메일이나 휴대폰 전송 등에 그치고 있다. 따라서 사용자를 유치하기 위한 전략으로 추천시스템을 제안하고자 한다. 그 방법으로, 본 논문에서는 음악의 파형 변화를 분석하고, 사용자가 다운로드했던 파일의 리스트를 통하여 사용자 맞춤형 추천 시스템을 벡터 유사도를 통하여 구현하고자 한다. 음악에 대한 성분은 파형을 통하여 진폭과 진동수에 대한 특징 벡터를 추출한다. 그리고 사용자의 다운로드 리스트에 누적시킨다. 위의 두 절차를 통해 사용자의 리스트를 분석하여 비슷한 성분의 음악을 검색한다. 실험을 위해 사용되는 음악 성분에 대한 내용은 수치적인 데이터를 기반하고 있기 때문에 자동화가 용이했고, 빠른 연산 시간과 유동적인 검색 범위를 가질 수 있었다.

  • PDF

상황인지 음악추천을 위한 음악 분위기 검출 (Detection of Music Mood for Context-aware Music Recommendation)

  • 이종인;여동규;김병만
    • 정보처리학회논문지B
    • /
    • 제17B권4호
    • /
    • pp.263-274
    • /
    • 2010
  • 상황인지 음악추천 서비스를 제공하기 위해서는 무엇보다 상황 또는 문맥에 따라 사용자가 선호하는 음악의 분위기를 파악할 필요가 있다. 음악 분위기 검출에 대한 기존 연구의 대부분은 수작업으로 대표구간을 선정하고, 그 구간의 특징을 이용하여 분위기를 판별한다. 이러한 접근 방법은 분류 성능이 좋은 반면 전문가의 간섭을 요구하기 때문에 새로운 음악에 대해서는 적용하기 어렵다. 더욱이, 곡의 진행에 따라 음악 분위기가 달라지기 때문에 음악의 대표 분위기를 검출하는 것이 더욱 어려워진다. 본 논문에서는 이러한 문제점들을 보완하기 위해 음악 분위기를 자동으로 판별하는 새로운 방법을 제안하였다. 먼저 곡 전체를 구조적 분석 방법을 통하여 비슷한 특성을 갖는 세그먼트들로 분리한 후 각각에 대해 분위기를 판별한다. 그리고 세그먼트별 분위기 파악 시 Thayer 의 2차원 분위기 모델에 기초한 회귀분석 방법으로 개인별 주관적 분위기 성향을 모델링하였다. 실험결과, 제안된 방법이 80% 이상의 정확도를 보였다.

Multi-Feature Clustering을 이용한 강인한 내용 기반 음악 장르 분류 시스템에 관한 연구 (A Study on the Robust Content-Based Musical Genre Classification System Using Multi-Feature Clustering)

  • 윤원중;이강규;박규식
    • 대한전자공학회논문지SP
    • /
    • 제42권3호
    • /
    • pp.115-120
    • /
    • 2005
  • 본 논문에서는 multi-feature clustering(MFC) 방법을 이용한 강인한 내용 기반 음악 장르 분류 알고리즘을 제안한다. 기존 연구와 비교하여 본 논문에서는 입력 질의 패턴(또는 구간)과 입력 질의 길이의 변화에 따라 나타나는 불안정한 시스템 성능을 개선하는데 노력하였고, k-means clustering 기법에 기반한 multi-feature clustering(MFC)이라는 새로운 알고리즘을 제안하였다. 제안된 시스템의 성능을 검증하기 위해 질의 음악 파일의 서로 다른 여러 구간에서 질의 길이를 다변화하여 음악 특징 계수를 추출하였고, MFC 방법을 사용한 시스템과 MFC 방법을 사용하지 않은 시스템에 대한 장르 분류 성공률을 비교하여 제안 알고리즘의 성능을 비교${\cdot}$분석하였다. 모의실험 결과 MFC 방법을 사용한 시스템의 장르 분류 성공률이 높게 나타났고, 시스템의 안정성 역시 높게 나타났다.

Gaussian Mixture Model을 이용한 다중 범주 분류를 위한 특징벡터 선택 알고리즘 (Feature Selection for Multi-Class Genre Classification using Gaussian Mixture Model)

  • 문선국;최택성;박영철;윤대희
    • 한국통신학회논문지
    • /
    • 제32권10C호
    • /
    • pp.965-974
    • /
    • 2007
  • 본 논문에서는 내용 기반 음악 범주 분류 시스템에서 다중 범주를 위한 특징벡터 선택 알고리즘을 제안한다. 제안된 특징벡터 선택 알고리즘은 분리 성능을 측정할 때 가우시안 혼합 모델(Gaussian Mixture Model: GMM)을 기반으로 GMM separation score을 측정함으로써 확률분포 및 분리 성능 추정의 정확도를 높였고, sequential forward selection 방법을 개선하여 이전까지 선택된 특징벡터들이 분리를 잘 하지 못하는 범주들을 기준으로 다음 특징벡터를 선택하는 알고리즘을 제안하여 다중 범주 분류의 성능을 높였다. 제안된 알고리즘의 성능 검증을 위해 음색, 리듬, 피치 등 오디오 신호의 특징을 나타내는 다양한 파라미터를 오디오 신호로부터 추출하여 제안된 특징벡터 선택 알고리즘과 기존의 알고리즘으로 특징벡터를 선택한 후 GMM classifier와 k-NN classifier를 이용하여 분류 성능을 평가하였다. 제안된 특징벡터 선택 알고리즘은 기존 알고리즘에 비하여 3%에서 8% 정도의 분류 성능이 향상된 것을 확인할 수 있었고 특히 낮은 차원의 특징벡터의 분류 실험에서는 분류 정확도 측면에서 5%에서 10% 향상된 좋은 성능을 보였다.

오디오의 파형과 FFT 분석을 이용한 대표 선율 검색 (Representative Melodies Retrieval using Waveform and FFT Analysis of Audio)

  • 정명범;고일주
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제34권12호
    • /
    • pp.1037-1044
    • /
    • 2007
  • 최근 내용 기반 음악 검색 시스템에서는 사용자의 응답 시간을 단축시키기 위해 음악의 대표성을 갖는 선율을 추출하여 색인하고, 검색 시 이를 사용한다. 기존 연구에서는 미디(midi) 데이타를 이용하여 대표 선율을 추출하는 방법이 제안되었으나, 미디 데이타에 한정되는 단점이 있었다. 따라서 본 논문에서는 디지털 신호처리를 이용하여 모든 오디오 파일 포맷에 적용 가능한 대표 선율 검색을 제안한다. 대표 선율 검색을 위해 FFT(Fast Fourier Transform)을 이용하여 박자와 마디를 찾고 각 마디들의 PCM 데이타로부터 높은 수치가 나타나는 빈도를 측정한다. 이때 높은 수치들이 가장 많이 뭉쳐 있는 영역에서 여덟 마디 간격이 오디오 데이타의 대표 선율 영역이다. 제안 방법의 유효성을 검증하기 위한 실험으로 총 1000곡을 선택하여 대표 선율을 추출하였고, 그 결과 템포를 찾아낸 737곡 중 79.5%의 정확성을 보였다.