• 제목/요약/키워드: 내연발전

검색결과 56건 처리시간 0.019초

금속-유기 골격체를 이용한 CO2/CH4 분리: 플렉서블 효과와 강한 흡착 사이트 비교 연구 (CO2/CH4 Separation in Metal-organic Frameworks: Flexibility or Open Metal Sites?)

  • 정민지;오현철
    • 멤브레인
    • /
    • 제28권2호
    • /
    • pp.136-141
    • /
    • 2018
  • 이산화탄소($CO_2$)는 천연 가스, 바이오 가스, 매립 가스의 성분으로 존재할 뿐만 아니라 화석연료의 주요 연소 생성물로써 온실 가스의 주범이다. 특히 내연기관의 연료 고효율을 얻고, 가스 수송시스템의 부식을 방지하며, 기후변화에 선제적으로 대응하기 위해서는 이산화탄소($CO_2$)의 저감 또는 제거 기술이 필수적이다. 지난 수십 년간, 멤브레인 기반 기술의 구성 및 설계 단순성에 의하여 관련 연구가 많이 이루어져 왔으며 많은 발전을 이루었다. 최근 들어, 기존 멤브레인 기반 분리 뿐만 아니라, 새로운 흡착제 기반 분리 기술 등에 대한 관심도 높아지고 있다. 특히, 최근 각광받고 있는 유기-금속 골격체(Metal Organic Frameworks, MOFs)의 경우, 일반 다공질 흡착제와는 다른 독특한 성질(Flexibility, Gating effect 또는 Open Metal Sites 등)로 인하여, 이를 활용한 다양한 기체 분리 연구가 늘어나고 있는 추세이다. 따라서 본 연구에서는 대표적 플렉서블한 물질인 MIL-53(Al)과 강한 결합에너지 site를 다수 보유한 대표적 MOF 물질인 MOF-74(Ni)를 활용하여 온도 및 압력에 따른 이산화탄소 메탄 분리 성능 비교 분석하였으며, 각 물질의 특성별 압력 및 온도에 따라 변화하는 적정 분리 구간을 제시하였다.

선박용 디젤엔진의 NOx를 저감하기 위한 습식 배기가스 처리기술 적용에 관한 실험적 연구 (Experimental study of NOx reduction in marine diesel engines by using wet-type exhaust gas cleaning system)

  • 류영현;김태우;김정식;남정길
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제41권3호
    • /
    • pp.216-221
    • /
    • 2017
  • 디젤엔진은 내연기관 중에 제동 열효율이 가장 높은 엔진이기 때문에 큰 동력을 필요로 하는 대형트럭과 같은 중 대형 운송 차량 및 선박 등의 수송분야 및 발전시스템 등의 다양한 분야에서 사용되어지고 있다. 하지만, 디젤엔진은 연소과정에서 질소산화물(이하 NOx) 발생량이 많은 단점을 가지고 있다. 따라서 본 연구에서는 선박용 디젤엔진의 NOx를 저감하기 위해서 습식 배기가스 처리 기술인 무격막식 해수 전기분해 방식을 이용하여 NOx 저감을 시도하였다. 실제 해수를 사용하여 디젤엔진에서 배출되는 유해가스에 전기 분해된 해수인 전해수를 분사하여 보았다. 전해수의 pH 농도 및 유효염소농도, 온도에 따른 NO 산화율 및 NOx 감소량을 조사하였다. 본 실험을 통해서 전해수의 pH가 약산성 영역일 경우가 중성일 경우보다 산화탑에서의 NO 산화율이 상승하였고, 유효염소농도가 높을수록 NO 산화율이 증가하는 것을 확인할 수 있었다. 또한, 전해수 온도는 NO 산화율에 영향이 없음을 추가적으로 확인할 수 있었으며 디젤엔진에서 생성된 배기배출물에 전해수를 분사함으로써 NOx가 저감됨을 확인할 수 있었다.

휘발유의 MTBE 함량 변화에 따른 입자개수 및 배출가스 특성 (Characteristics of Particle Number and Exhaust emission by Alteration of MTBE Contents in Gasoline)

  • 임태윤;송호영;박천규;황인하;하종한;나병기
    • 에너지공학
    • /
    • 제24권4호
    • /
    • pp.42-47
    • /
    • 2015
  • 국내에 유통되는 자동차용휘발유의 산소함량은 2.3 wt % 이하로 규제하고 있는 반면, 유럽 및 세계연료헌장(WWFC)에서는 2.7 wt % 이하로 규제하고 있다. 산소함량을 결정짓는 함산소물질은 내연기관 내에서 연료의 연소를 보조하여 옥탄가를 상승시키고, 불완전연소로 야기되는 CO, HC와 같은 배출가스 저감에 효과가 있는 것으로 보고되고 있다. 2000년대 이전 미국, 유럽 등에서 자동차용휘발유의 산소함량 변화에 따른 차량적용 평가연구가 추진된 바 있으나, 발전하고 있는 연료품질, 자동차기술현황을 반영한 국내실정의 연구는 많지 않다. 본 연구에서는 자동차용휘발유의 산소함량을 변화시킨 3종의 연료를 GDI, MPI 연료 분사 방식의 차량에 적용하여 비교 평가 하였다. 결과적으로 산소함량 변화에 따른 연비, 배출가스의 변화는 유사하였지만, GDI 엔진에서 산소함량이 증가할수록 PN은 감소하는 경향을 나타내었다.

한국 내연기관 개발의 현재와 미래

  • 이현순
    • 기계저널
    • /
    • 제29권6호
    • /
    • pp.573-580
    • /
    • 1989
  • 현재 한국의 자동차 공업은 80년대 초반부터 급격한 발전으로 세계의 다른 자동차 생산국으로부 터 경계의 대상이 되고 있다. 그러나 그 내면을 살펴보면 아직도 중요한 기술은 거의 대부분 일 본이나 독일, 미국 등 자동차 선진국의 기술에 의존하고 있으며 특히 엔진 분야는 대부분 외국 기술에 의존하고 있다고 해도 과언이 아니다. 엔진은 자동차 생산원가의 약 30%를 차지하며 자동차의 성능을 좌우하는 경우 기술료 지급은 물론이며 부품구매 선택의 여지가 없어진다. 또한 요즈음과 같이 상품의 수명주기가 짧게 되어 가는 추세 하에서는 시장의 요구에 대처해나가는 엔지니어링 적응력이 부족하게 되면 결국 경쟁성을 상실하게 된다. 그러나 이러한 문제점을 인 식하면서도 80년대 초까지 독자적인 엔진개발을 하지 못했던 원인은 크게 2가지로 분석할 수 있다. 첫째는 한국의 자동차 회사들의 기술 축적의 미약과 둘째는 독자개발의 낮은 투자효율성 이다. 즉 엔진과 변속기를 기술 도입할 때 기술료 지급은 자동차 생산댓수당 5-6만원에 달하지만 엔진과 변속기를 독자개발시의 투자비는 약 300-500억원에 달하므로 간단한 산술적 계산으로는 모델당 100만대를 생산하여야만 투자의 가치가 있는 것으로 보여진다. 물론 위에서 언급한 바와 같은 여러 가지 요인에 의하면 이 숫자보다 훨씬 적은 생산량으로도 경쟁성이 확보될 것으로 예상된다. 이제 한국의 자동차 생산량도 연간 백만 대를 상회하는 수준이며 앞으로도 급격한 양과 질적인 팽창이 기대되고 있는 시점에 자동차 메이커들은 각사 모두 독자적인 고유 엔진 개발을 착수하였으며 일부 회사는 이미 성공을 거두어 양산 준비를 하고 있는 것으로 알고 있다. 그러나 아직도 엔진의 설계부터 양산까지 걸리는 기간이 타 선진 메이커에 비하면 상당히 길며 이로 인해 신제품의 경쟁력 저하가 우려되고 있는 상태이다. 이러한 문제점 해결에 도움을 주기 위해서 학계는 기업체의 기술 개발방향과 전략을 이해하는 것이 필요하다.grightarrow$cn-semistratifiable over$\longrightarrow$semistratifiable over $\alpha$ 2, 어떤 공간이 cn-Semistratifiable over $\alpha$이기 위한 필요충분 조건은 그것이 linearly cushioned cn-pairnet를 갖는 것이다. 3. cn-semistratifiable over $\alpha$의 부분공간 역시 cn-semistratifiabie over $\alpha$ 하다. 4. on-semistratifiable over $\alpha$의 유한개의 적공간 역시 cn-semistratifiabie over $\alpha$한다. 5. 폐 cn-semistratifiable over $\alpha$ 부분공간들의 합공간 역시 on-semistrbtifiable over $\alpha$ 하다. 6. 폐연속 net-cevering 함수에 의하여 cn-semistratifiable over $\alpha$ 성질이 보존된다. 보잘것이 없었고, 현재에도 각 시도별 또는 대학주관의 경시대회가 있으나 거국적인 호응을 받지 못했다. 물론 국제 대회에 참석시키는 것은 엄두도 내지 않았다.로 나타났다. 4. 코코넛과 소나무수피의 경우 암모니아 가스에 대한 흡착 능력은 거의 비슷한 것으로 사료되며, 코코넛의 경우 전량을 수입에 의존하고 있다는 점에서 국내 조달이 용이하며, 구입 비용도 적게 소요되는 소나무수피를 사용하는 것이 경제적이라고 사료된다. 5. 마지막으로 악취제거 미생물균주를 접종한 소나무수피 50%와 펄라이트 30%의 혼합재료를 24시간 동안 장기간 운전 실험을 수행한 결과 암모니아 99.06%, 황화수소 96.61%의 제거

  • PDF

가상 시뮬레이션을 통한 농업용 전동 UTV의 서스펜션 스프링 계수 결정 연구 (A Study on Determination of Suspension Spring Coefficient of Electric UTV for Agricultural Use through Virtual Simulation)

  • 김상철;김성훈;김승완
    • 스마트미디어저널
    • /
    • 제11권5호
    • /
    • pp.75-81
    • /
    • 2022
  • 농업의 탄소 중립 및 기후변화 대응을 위해 그동안 내연기관 중심으로 발전해 왔던 농업기계도 온실가스의 배출이 없는 전동 기반의 기술로 전환이 필요하다. 이 연구에서는 농업용 전동 UTV의 진동과 충격을 저감시키고, 차량의 주행안정성과 조종성능을 향상하기 위하여 전동 UTV 서스펜션 설계를 위한 시뮬레이션을 수행하였다. 시뮬레이션은 차체의 공차 하중과 화물을 적재한 하중 상태로 나누어 수행되었다. UTV의 서스펜션 스프링의 가동 범위는 조건 B가 공차상태에서 가동범위 30% 이내의 수준을 나타내고, 적재 중량을 만재한 상태의 UTV 서스펜션 변위는 264mm→121mm로 작아지고, 댐핑속도는 260mm/s→300mm/s로 가동범위 60% 이내의 수준에 있음을 알 수 있었다. 다목적 농작업용을 위한 전동 UTV의 서스펜션은 주행과 지형 적응뿐 아니라 경운과 같은 견인작업에서 농작업 능력을 유지하기 위해 매우 중요한 요인이다. 이 연구의 결과는 전동 UTV를 다양한 농작업에 이용할 수 있도록 적절한 댐핑 범위를 갖는 스프링 파라메터를 결정하는데 유용하게 활용될 수 있을 것이다.

시비(施肥)의 합리화(合理化)와 비종개발(肥種開發) (Rationalization of Fertilizing and Development of Fetilizer)

  • 임선욱
    • 한국토양비료학회지
    • /
    • 제15권1호
    • /
    • pp.49-50
    • /
    • 1982
  • 비료(肥料)를 합리적(合理的)으로 시용(施用)하고 여러가지 사정(事情)에 적합(適合)한 비종(肥種)을 개발하는 문제(問題)는 작물(作物)의 생산성(生産性)을 향상(向上) 시키기 위한 것 뿐만 아니라 농업경영, 농업정책(農業政策) 및 화학공학적(化?工?的)인 측면(側面)에서도 검토(?討)되어야 할 문제(問題)이다. 경작(耕作)의 기술(技術)과 비료(肥料)의 제반사정(諸般事情)이 국가적(?家的), 지역적(地域的) 특성(特性) 또는 시대(時代)에 따라 변동(?動)있고 차이(差異)가 있게 되는 것은 여러가지 기본적(基本的)인 조건(條件)과 배경(背景)에 의한다고 할 수 있다. 그러한 조건(條件)으로 중요시(重要視)되는 것을 들면 다음과 같다. 1. 자원(資源)-천연산(天然産), 부산물(副産物) 에너지 2. 비료생산(肥料生産)의 기술수준(技術水準) 3. 토양(土壤)의 특성(特性) 4. 농경업(農耕業)의 특성(特性)과 경작기술수준(耕作技術水準) 5. 식물(植物) 영향학적(營養?的) 이론(理論)의 발전(?展) 6. 기계화(機械化) ((수송(輸送), 저장(貯藏), 시용(施用)을 위한) 시설(施設) 7. 작물(作物)의 영양소(營養素) 요구(要求)와 비료성분(肥料成分)의 복합화(複合化) 8. 비료(肥料)의 생산효율(生産效率) 및 이용율(利用率) 9. 잔류성분(殘留成分)의 축적(蓄積)과 공해성(公害性) 10. 노력(?力)의 경제(??)와 다목적화(多目的化)(농약혼합등(農?混合等)) 이와 같이 많은 조건(條件)들은 지역(地域) 사정(事情)에 따라 단독(單獨) 또는 복합적(複合的)으로 다소간(多少間)의 차이(差異)는 있겠으나 비료(肥料)의 생산(生産)으로부터 시용(施用)에 이르기까지 관련(關聯)될 것이다. 우리나라의 농업(農業)이 이제까지 주(主)로 미곡생산(米?生産)을 위한 답작(沓作) 위주(爲主)의 농업(農業)이었고 비료(肥料)도 그의 물리적(物理的), 화학적(化?的) 형태(形態) 및 성분비(成分比)가 답작(沓作) 위주(爲主)로 개발(開?) 생산(生産)되어 왔다고 할 수 있을 것이며 더구나 선택(選?)의 여유(餘裕)가 거의 없이 단순(單純)한 비종(肥種)에 한(限)하여 왔다고 할 수 있다. 앞으로 영농(營農)의 과학화(科?化), 현대화(現代化) 및 집약화(集約化) 과정(過程)에서 각종(各種) 재배기술(栽培技術)의 개선(改善)이 필연적(必然的)으로 이루워 질 것이다. 따라서 작물(作物)의 영양(營養) 및 환경(環境) 상태(狀態)의 개선(改善)은 가장 기본적(基本的)인 과제(課題)가 될 것이다. 시비(施肥)의 합리화(合理化)란 작물(作物)의 영양생리(營養生理) 및 재배(栽培) 환경(環境)에 적합(適合)한 형태(形態)의 비료(肥料)를 시용(施用)하거나 또는 이러한 조건(條件)을 개선(改善)한 목적(目的)으로 취하(取)여지는 모든 수단(手段)을 말한다. 시비합리화(施肥合理化)가 이루어지면 시비(施肥) 성분(成分)의 이용율(利用率) 및 효율증대(效率增大)와 농산물생산(農産物生産)의 제고(提高) 더 나아가서는 품질향상(品質向上)도 기대(期待)할 수 있게 될 것이다. 시비(施肥) 합리화(合理化)의 실제적(?際的)인 문제(問題)로는 작목별(作目別), 생육시기별(生育時期別), 지대(地帶) 또는 토양별(土壤別), 그리고 기상조건(氣象條件)에 적합(適合)한 비종(肥種)을 구성성분(構成成分)의 화학형(化?型)과 비(比)를 선정(選定)하고, 시용량(施用量)을 조절(調節)하여 시용방법(施用方法)과 위치(位置) 선정(選定)하는 등(等)의 문제(問題)를 들 수 있을 것이다. 이러한 여러 관련요인(關聯要人)의 영향(影響)은 불확정(不確定)인 경우가 많으므로 그에 대처(??)하는 과학적(科?的)인 검토(檢討)와 판단(判斷)이 있어야 될 것이다. 어느 비종(肥種)의 선택(選?) 또는 신비종(新肥種)의 개발(開?)은 비료산업(肥料産業)의 기초(基礎)가 될 것이며 그것을 위하여는 여러 요인(要因)을 참고(參考)하여야 할 것이다. 현재(現在) 우리나라의 농업(農業) 특히 광범위(?範?)한 작물생산(作物生産)을 위하여 사용(使用)되는 비료(肥料)는 여러 관점(?点)에서 재검계(再?計)하여야 될 것으로 생각된다. 이를 좀 더 구체적(具?的)으로 고찰(考察)하여 보면 아래와 같다. 가. 현재(現在) 국내(?內)에서 가공(加工) 또는 생산(生産)되는 비종(肥種) (단비(單肥) 5종(種), 복비(複肥)의 9종(種)은 작물별(作物別) 또는 구성(構成) 성분(成分)의 화학적형태(化?的形態) 및 성분비면(成分比面)에서 적합성(適合性)을 다시 검토(檢討)하여야 할 것이다. 특(特)히 복비(複肥)의 생산(生産) 작물별(作物別), 토양특성별(土壤特性別) 또는 기추비용별(基追肥用別)로 다양화(多樣化)하는 것이 시비효과(施肥效果)의 증대면(增大面)에서 합리적(合理的)이라 할 수 있을 것이다. 또한 경제작물(??作物)의 재배확대(栽培?大)와 목초지(牧草地)의 확대(?大)는 필연적(必然的)일 것이므로 그에 적합(適合)한 비종(肥種)의 생산(生産)이 요망(要望)된다. 한편 현재(現在) 3요소(三要素)의 소비비(消費比)가 전체적(全?的)으로 보아 질소편중(窒素偏重)(1979년(年)에 N-P-K 51.5-26.3-22.2%)의 시비(施肥)가 되고 있으며 10a당(?) 소비(消費)도 국외(國外)에 비(比)하여 P, K는 크게 뒤지고 있는 실정(?情)을 감안(勘案)할 때 이를 개선(改善)할 비종(肥種)도 고려(考慮)되어야 할 것이다. 나. 토양조사(土壤調査)와 검정결과(檢定結果)를 시비(施肥)의 기초(基礎)로 활용(活用)하도록 하여야 한다. 토양(土壤)의 특성(特性) 특(特)히 자연비옥도(自然肥沃度)는 지역(地域)에 따라 다소간(多少間)의 차이(差異)가 있으므로 이를 고려한 비종개발(肥種開?) 및 시비(施肥)가 이루어져야 한다. 다. 작물(作物)의 영양진단(營養診斷)은 결과(結果)를 시비(施肥)의 기초(基礎)로 특히 추비(追肥)를 위하여 활용(活用)함이 합리적(合理的)일 것이다. 이를 위하여는 먼저 진단방법(診斷方法)(화학적(化?的), 형태적(形態的)이 확립(確立)되어야 할것이다. 라. 농업기계화사업(農業機械化事業)은 시비(施肥)의 기계화(機械化)를 전제(前提)로 추진(推進)되어야 한다. 비료(肥料)의 종류(種類)와 시비목적(施肥目的)에 따라 적합(適合)한 기계(機械)가 개발(開癸)되어야 하며, 동력(動力)(전동(電動) 또는 내연기관(內燃機關)에 의한)과 비동력(比動力)의 일반용(一般用), 분상(粉?), 액비용(液肥用), 시비기(施肥機)의 보급(普及)이 요망(要望)된다. 마. 유기질비료(有機質肥料)의 시용(施用)이 유익(有益)함은 주지(周知)의 사실(事?)이나 그 자원(資源)의 확보(確保)와 합리적(合理的) 시용방법(施用方法)이 확립(確立)되어야 할 것이다. 바. 완효성(緩效性) 또는 특수기능(特殊機能) 비료(肥料)의 수요(需要)가 소규모(小規模)일지라도 그의 생산(生産)은 특수(特殊)한 목적(目的)을 위하여 필요(必要)하다고 판단(判斷)된다. 완효성비료(緩效性肥料), (질소(窒素), 인산, 칼리)와 특수기능비료(特殊機能肥料)의 생산(生産)이 경제적(??的)으로 유리(有利)하도록 여건(?件)을 조성(造成)해 주어야 할 것다. 사. 농가(農家)와 타산업(他産業)의 부산물(副産物) 및 폐기물(廢棄物)은 자원(資源)의 활용(活用)과 공해요인(公害要因)의 제거(除去)를 위하여 최대한(最大限) 비료(肥料)로서 운용(?用)됨이 바람직하며 기초적(基礎的)으로 자료(資料)의 성상(性?)과 시용방법(施用方法)이 구명(究明)되어야 한다. 아. 시비기초(施肥基礎)의 전산화(電算化)는 농업(農業)의 과학화과정(科?化過程)에서 필연적(必然的)이라 할 수 있으며 이를 위하여는 먼저 토양(土壤)과 식물체(植物?)의 분석(分析)을 통(通)한 진단(診斷)과 비료(肥料)의 특성(特性)과 공급상형(供給?況)으로부터 과학적(科?的) 시비처방(施肥?方) 즉 요구성분(要求成分)의 종류(種類)는 양(量), 시용시기(施用時期), 시용방법(施用方法) 제시(提示)가 있어야 한다. 자. 비료(肥料)의 합리적(合理的) 시용방법(施用方法) 및 기술(技術)은 성분(成分)의 이용율(利用率)과 효율(效率)을 높이기 위한 수단(手段)이므로 토양(土壤), 작물(作物) 또는 기상조건(氣象條件)등에 따라 시비시기(施肥時期), 위치(位置), 방법(方法), 형태(形態)등을 조절(調節) 변경(?更)하므로서 시비효과(施肥效果)를 높여야 한다. 차. 식물영양학적(植物營養?的)인 지식(知識)을 기초(基礎)로 한 새로운 비종(肥種)의 개발(開?) 즉(?) 미량요소(微量要素) 또는 생장조절물질(生長調節物質)을 함유(含有)한 특수기능비료(特殊機能肥料)의 개발보급(開?普及)이 요망(要望)된다.

  • PDF