• Title/Summary/Keyword: 내압구조물

Search Result 36, Processing Time 0.018 seconds

Study of Size Optimization for Skirt Structure of Composite Pressure Vessel (복합재 압력용기의 스커트 치수 최적화 설계 연구)

  • Kim, Jun Hwan;Shin, Kwang Bok;Hwang, Tae Kyung
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.37 no.1
    • /
    • pp.31-37
    • /
    • 2013
  • This study aims to find the optimal skirt dimensions for a composite pressure vessel with a separated dome part. The size optimization for the skirt structure of the composite pressure vessel was conducted using a sub-problem approximation method and batch processing codes programmed using ANSYS Parametric Design Language (APDL). The thickness and length of the skirt part were selected as design variables for the optimum analysis. The objective function and constraints were chosen as the weight and the displacement of the skirt part, respectively. The numerical results showed that the weight of the skirt of a composite pressure vessel with a separated dome part could be reduced by a maximum of 4.38% through size optimization analysis of the skirt structure.

The Estimation of Buckling Load of Pressurized Unstiffened Cylindrical Shell Using the Hybrid Vibration Correlation Technique Based on the Experimental and Numerical Approach (실험적/수치적 방법이 혼합된 VCT를 활용한 내부 압력을 받는 원통형 쉘의 좌굴 하중 예측)

  • Lee, Mi-Yeon;Jeon, Min-Hyeok;Cho, Hyun-Jun;Kim, Yeon-Ju;Kim, In-Gul;Park, Jae-Sang
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.50 no.10
    • /
    • pp.701-708
    • /
    • 2022
  • Since the propellant tank structure of the projectile is mainly subjected to a compressive force, there is a high risk of damage due to buckling. Large and lightweight structures such as propellant tank have a complex manufacturing process. So it requires a non-destructive test method to predict buckling load to use the structure after testing. Many studies have been conducted on Vibration Correlation Technique(VCT), which predicts buckling load using the relationship between compressive load and natural frequency, but it requires a large compressive load to predict the buckling load accurately, and it tends to decrease prediction accuracy with increasing internal pressure in structure. In this paper, we analyzed the causes of the decrease in prediction accuracy when internal pressure increases and proposed a method increasing prediction accuracy under the low compressive load for being usable after testing, through VCT combined testing and FEA result. The prediction value by the proposed method was very consistent with the measured actual buckling load.

Mechanical Properties of a Lining System under Cyclic Loading Conditions in Underground Lined Rock Cavern for Compressed Air Energy Storage (복공식 지하 압축공기에너지 저장공동의 내압구조에 대한 반복하중의 역학적 영향평가)

  • Cheon, Dae-Sung;Park, Chan;Jung, Yong-Bok;Park, Chul-Whan;Song, Won-Kyong
    • Tunnel and Underground Space
    • /
    • v.22 no.2
    • /
    • pp.77-85
    • /
    • 2012
  • In a material, micro-cracks can be progressively occurred, propagated and finally lead to failure when it is subjected to cyclic or periodic loading less than its ultimate strength. This phenomenon, fatigue, is usually considered in a metal, alloy and structures under repeated loading conditions. In underground structures, a static creep behavior rather than a dynamic fatigue behavior is mostly considered. However, when compressed air is stored in a rock cavern, an inner pressure is periodically changed due to repeated in- and-out process of compressed air. Therefore mechanical properties of surrounding rock mass and an inner lining system under cyclic loading/unloading conditions should be investigated. In this study, considering an underground lined rock cavern for compressed air energy storage (CAES), the mechanical properties of a lining system, that is, concrete lining and plug under periodic loading/unloading conditions were characterized through cyclic bending tests and shear tests. From these tests, the stability of the plug was evaluated and the S-N line of the concrete lining was obtained.

Analysis on the Stress of Hydraulic Cylinder for Large Vessel by Boundary Element Method (대형선박용 유압실린더에서 경제요소법을 이용한 응력해석)

  • 김옥삼
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.31 no.4
    • /
    • pp.423-434
    • /
    • 1995
  • It was used boundary element method(BEM) and analysed axisymmetric problem to solve hydraulic cylinder for large vessel acting uniform internal pressure(25N/m super(2)) within elastic limit. This paper was utilized the carbon steel tubes for machine structural purposed model, inner radius was 150mm and outer radius was 250mm, axial length was semi-infinite and the isoparametric element was used. The important results obtained in this study were summarized as follows. Radial, tangential and shearing stress occured the maximum stresses(48, -20 and 34MPa) at the inner radius and the minimum stresses(32, -4 and 18MPa) at the outer radius of the hydraulic cylinder for large vessel. But negative signs have meaning compressive stress and stress diminution ratio was about 0.15MPa/mm. The use of isoparametric element raised accuracy and the increment of input data lessened the error in internal point but computer run-time was increased. The double node was improved the internal solutions to settle discontinuity at corner and the double exponential formula lessened error of stress value at boundary neighborhood. And then coincidence between the analytical and exact results is found to be fairly good, showing that the proposed analytical by BEM is reliable.

  • PDF

The Structural Integrity Test for a PSC Containment with Unbonded Tendons and Numerical Analysis II (비부착텐던 PSC 격납건물에 대한 구조건전성시험 및 수치해석 II)

  • Noh, Sanghoon;Jung, Raeyoung;Lee, Byungsoo;Lim, Sang-Jun
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.28 no.5
    • /
    • pp.535-542
    • /
    • 2015
  • A reactor containment acts as a final barrier to prevent leakage of radioactive material due to the possible reactor accidents into external environment. Because of the functional importance of the containment building, the SIT(Structural Integrity Test) for containments shall be performed to evaluate the structural acceptability and demonstrate the quality of construction. In this paper, numerical analyses are presented, which simulate the results obtained from the SIT for a prestressed concrete(PSC) structure. A sophisticate structural analysis model is developed to simulate the structural behavior during the SIT properly based on various preliminary analysis results considering contact condition among structural elements. From the comparison of the analysis and test results based on the acceptance criteria of ASME CC-6000, it can be concluded that the construction quality of the containment has been well maintained and the acceptable performance of new design features has been verified.

The Structural Integrity Test for a PSC Containment with Unbonded Tendons and Numerical Analysis I (비부착텐던 PSC 격납건물에 대한 구조건전성시험 및 수치해석 I)

  • Noh, Sanghoon;Jung, Raeyoung;Kim, Sung-Taek;Lim, Sang-Jun
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.28 no.5
    • /
    • pp.523-533
    • /
    • 2015
  • A reactor containment acts as a final barrier to prevent leakage of radioactive material due to the possible reactor accidents into external environment. Because of the functional importance of the containment building, the SIT(Structural Integrity Test) for containments shall be performed to evaluate the structural acceptability and demonstrate the quality of construction. An initial numerical analysis was performed to simulate the results obtained from the SIT for a prestressed concrete(PSC) structure. But the analysis results by the initial model expected smaller displacements than the measured ones by 30% at some locations. Accordingly, the research and development to improve the initial model to corelate the measured results of the SIT more properly have been performed. In this paper, the effects of the loss of concrete due to duct for tendons and the contact of duct and tendons in un-bonded tendon system are mainly evaluated based on the preliminary analysis results. In addition, the importances of the proper definition of mesh connectivity among structural elements of concrete, liner plates, rebars and tendons are discussed.