• 제목/요약/키워드: 내부 피폭

검색결과 132건 처리시간 0.025초

BiDAS를 적용한 원전 해체 공정 시 발생되는 방사성 에어로졸의 내부피폭 영향평가 사전 연구 (A Preliminary Study on the Evaluation of Internal Exposure Effect by Radioactive Aerosol Generated During Decommissioning of NPPs by Using BiDAS)

  • 송종순;이학윤;김선일
    • 방사성폐기물학회지
    • /
    • 제16권4호
    • /
    • pp.473-478
    • /
    • 2018
  • 원전 해체 공정 중 절단 및 용융작업에서 발생되는 방사성 에어로졸은 작업종사자의 호흡을 통해 내부 피폭을 유발하게 된다. 이에 따라 해체 중 방사성 에어로졸로 인한 작업종사자의 내부피폭 평가가 필요한 실정이다. 정확한 내부피폭평가를 위해서는 작업종사자의 작업환경 실측값이 필요하지만 실측에 어려움이 있을 시에는 국제방사선방호위원회(ICRP)에서 제시하는 섭취량 분율 및 입자 크기 등의 권고 값을 통해 내부피폭선량을 추정할 수 있다. 본 논문에서는 입자 크기의 선정은 ICRP에서 권고하는 작업종사자의 고려 입자 크기인 $5{\mu}m$을 적용하였다. 발생량의 경우, 불가리아의 Kozloduy 부지 내의 용융시설에서 발생 된 에어로졸의 포집량 데이터를 이용하여 섭취량을 산정하였다. 또한 이를 이용해 작업종사자의 체내 및 배설물에서의 방사능 수치를 계산하고 BiDAS 전산코드를 통해 내부피폭 평가를 수행하였다. Type M이 0.0341 mSv, Type S가 0.0909 mSv로 두 흡수 형태 각각 국내 연간 선량 한도의 0.17%, 0.45% 수준을 나타내었다.

내부피폭 감시주기 및 섭취형태가 방사성핵종 섭취량 평가에 미치는 영향 (Influence of the Monitoring Interval and Intake Pattern for the Evaluation of Intake)

  • Jong-Il Lee;Tae-Young Lee;Si-Young Chang;Jai-Ki Lee
    • 방사성폐기물학회지
    • /
    • 제2권1호
    • /
    • pp.53-59
    • /
    • 2004
  • 방사성핵종의 특성, 섭취형태 그리고 내부피폭 감시주기는 작업자의 방사성핵종 섭취량 및 내부피폭선량 평가 결과에 중요한 영향을 줄 수 있다. 따라서 방사성핵종이 흡입섭취 될 경우 섭취형태(급성 또는 만성) 및 내부피폭 감시주기에 따른 섭취량 평가 오차를 계산하였다. 섭취 핵종으로는 $^{125}$/I(Type F), $^{137}$Cs(Type F), $^{235}$ U(Type M, Type S)를 고려하였고, 방사능입자크기(AMAD)는 1 $\mu\textrm{m}$와 5 $\mu\textrm{m}$를 고려하였다. 섭취형태에 따라 평가된 섭취량의 상대오차는 방사성핵종, 흡수형태 그리고 내부피폭 감시주기에 따라 달랐으나, 입자크기에 의한 영향은 거의 없었다. 섭취형태 가정에 따른 섭취량 평가 오차를 10% 미만으로 줄일 수 있는 내부피폭 최대감시주기는 $^{125}$/I(Type F)에 대해 60일, $^{137}$Cs(Type F)에 대해 180일, $^{235}$ U(Type M)에 대해 90일, 그리고 $^{235}$ U(Type S)에 대해 360일로 나타났다.

  • PDF

방사성요오드의 내부피폭 선량평가 코드 비교계산 (Comparison of Internal Dose Assessment due to Intake of I-131)

  • 김은주;김희근;하각현;이형석
    • 한국방사성폐기물학회:학술대회논문집
    • /
    • 한국방사성폐기물학회 2003년도 가을 학술논문집
    • /
    • pp.579-583
    • /
    • 2003
  • 본 연구는 원자력발전소에서 방사선작업에 따른 I-131 흡입후 전신선량계측(Whole Body Counter WBC)한 결과에 따라 각 내부피폭 선량평가 코드를 이용하여 섭취량과 예탁유효선량(CED : Committed Effective Dose)을 계산하였다. 여기에는 국내에서 개발된 KIDAC 코드, 일본의 MONDAL 코드, 영국의 LUDEP 코드와 IMBA 코드가 이용되었다.

  • PDF

Technegas 스캐닝 후 중력환기에 의한 공간선량율 측정 (The Measurement of Spatial Dose Rate by Gravity Ventilation after Technegas Scanning)

  • 김성빈;원도연
    • 한국방사선학회논문지
    • /
    • 제13권4호
    • /
    • pp.667-674
    • /
    • 2019
  • Technegas를 사용한 검사는 단순 확산 누적을 통해 폐 영상을 이미지화하기 때문에 검사를 마친 후에 검사실이 오염될 수 있다. 따라서 방사선 작업 종사자와 검사를 기다리는 환자는 technegas 흡입으로 인한 내부 피폭의 영향을 받게 된다. 이에 중력환기 전후의 시간경과에 따른 공간선량율 분포를 비교, 분석함에 따라 방사선사, 의료진, 대기 환자의 피폭선량 저감화 방법을 모색하고자 한다. 중력환기 전후 환자의 호흡기 위치에서 거리별, 각도별로 공간선량율을 10분 동안 측정하고 평균값, 표준 편차 및 감소율을 계산하였다. 실험 결과, 중력 환기 전후 감소율은 최고 95.31%였고 가장 높은 감소율은 1 ~ 3분 사이에서 나타났다. 중력환기를 통해서 방사선 작업종사자, 대기환자, 환자 보호자 및 간호사의 피폭선량을 감소시킬 수 있다. 결론적으로 중력환기를 통한 피폭선량 감소 결과는 방호 최적화를 이루는 역할을 할 것이며 ICRP 103에서 권고한 의료 피폭 저감화에 부합된다.

PET 사이클로트론 시설의 공기 방사화 분석 (Analysis of Air Activation in PET Cyclotron Facility)

  • 장동근;강세식;김창수;김정훈
    • 한국방사선학회논문지
    • /
    • 제10권7호
    • /
    • pp.489-494
    • /
    • 2016
  • 사이클로트론에서 발생되는 핵반응은 불필요한 중성자를 발생시키며, 이로 인해 주변 물질들이 방사화되게 된다. 방사화된 물질은 방사선피폭의 원인으로, 공기가 방사화 되었을 경우 인체에 흡입되어 내부피폭을 발생 시킨다. 이에 본 연구에서는 16.5 MeV의 초소형 사이클로트론의 운영에 따른 내부 공기의 방사화를 분석하고자 하였다. 실험결과 초소형 사이클로트론의 핵반응으로 발생되는 방사화는 종사자에게 매우 낮은 내부피폭을 발생시키는 것을 확인할 수 있었으며, 방사화로 인하여 발생된 방사능을 법적 기준치와 비교하여 보았을 때 기준치 이하로 법적 관리의 대상에서 제외 될 수 있음을 알 수 있었다. 하지만, 사이클로트론의 에너지가 높아짐에 따라 내부피폭의 위험성은 더욱 높아질 우려가 있으며, 이에 따라 국내에 정립 되어 있지 않는 방사선 관련 시설의 환기설비에 대한 기준이 필요할 것으로 사료되었다.

방사선안전관리 실무: (I) 연간섭취한도와 유도공기중농도의 적용 (Practical Radiation Safety Control: (I) Application of Annual Limit on Intake and Derived Air Concentration)

  • 김현기
    • Journal of Radiation Protection and Research
    • /
    • 제38권4호
    • /
    • pp.234-236
    • /
    • 2013
  • 비밀봉 방사성물질을 취급하는 시설에서 이들 물질에 의한 작업환경의 다소간의 오염은 피할 수 없다. 오염의 우려가 있는 작업환경에서 오염관리의 일차적인 목적은 방사성물질의 잠재적 체내섭취로 인한 영향이다. 본 논문은 보수적 가정과 간단한 계산에 의거하여 공기오염에 따른 방사성물질의 공기중 농도와 흡입에 의한 연간 섭취량을 산출한 후, 관련 고시에서 정하는 유도공기중농도와 연간섭취한도와 비교함으로써 종사자의 내부피폭 정도를 평가하는 절차를 제공한다. 제시된 절차는 공기중 방사성물질 측정 및 내부피폭 감시의 필요성, 적합한 방호용구의 착용, 배기설비 설계를 위한 정보 획득 등 공기오염과 종사자의 내부피폭 감시를 위한 실무적 요건을 판단할 목적으로 활용될 수 있다.