• Title/Summary/Keyword: 내부충진

Search Result 140, Processing Time 0.023 seconds

Vibrations of a Fluid-filled Thick Cylindrical Shel with Embedded Internal Strength Members (길이 방향 내심 장력재를 갖는 유체 충진된 두꺼운 원통 셀의 진동 해석)

  • 함일배;정의봉;이헌곤
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1995.04a
    • /
    • pp.340-343
    • /
    • 1995
  • 본 연구에서는 내심형 장력재가 셀 벽속에 묻혀 있는 경우에, 셀의 진동 및 내부 음압을 셀과 장력부재 그리고 내부 충진유체들의 상호 작용을 고려하여 계산하였다. 계산 결과, 셀 재료와 인장 부재의 탄성계수, 감쇠특성의 차이에 따라 응답이 변화함을 확인할 수 있었으며, 각각의 재료 특성 및 설계 변수들에 대한 추가 연구를 수행하여, 내심형 장력 부재를 갖는 유체 충진 원통형 셀의 진동 전달 특성 해석 및 최적화 설계에 이 연구 결과들을 적용할 수 있을 것으로 판단된다.

  • PDF

Liquid Oxygen in Feeding Line during Propellant Filling and Holding (산화제 충진 및 대기 과정의 추진제 공급배관 내부 현상)

  • Kwon, Oh-Sung;Cho, Nam-Kyung;Chung, Yong-Gahp;Lee, Joong-Youp
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2007.04a
    • /
    • pp.34-37
    • /
    • 2007
  • Propellant filling and holding test was carried out using liquid oxygen as a working fluid. The feeding line system has a filter at propellant tank outlet. Vaporization of liquid oxygen during holding after completion of filling and effect of vaporization to recirculation performance in this system was observed. Filling rate and pressure of tank ullage had the effect on state of liquid oxygen in feeding line. There was no geysering in feeding line during holding because of the position of filter.

  • PDF

A Study on the Forming Technology of Multi-stage Aircell Filling Valves (다단 에어셀 충진 밸브성형기술에 관한 연구)

  • Kim, Mi-Suk;Park, Dong-Sam
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.12
    • /
    • pp.57-64
    • /
    • 2017
  • Today, due to the environmental regulations regarding air pollution in the EU, the use of EPS (Styrofoam) as the cushioning material in the packaging industry is decreasing. In effect, air cushioning based cushioning materials are rapidly expanding into the market and replacing EPS, due to their excellent buffering ability and environmental friendliness. This is a new selective filling type air filling material manufacturing technology that affords improvements in the amount of raw materials required, its processing and its aesthetic appearance compared to the conventional air filling cushioning materials. In this study, a multi-stage air cell filling valve molding technology is developed based on selective filling technology, which allows packages to be selectively filled in various forms by applying valve forming structure technology. This multi-stage air cell filling valve molding technology is a technique in which a plurality of injection ports are formed by laminating three layers of films, viz. a first injection film, a valve film, and a second injection film having valve ends. In the conventional technology, a separate external air injection path for injecting air into a plurality of connected air bags is needed. However, in the proposed system, an external air injection path is formed inside the air bag, Due to the lack of need for an injection furnace, the raw material and process are reduced and air is injected and then discharged, while the air bag is reduced in length to 63 ~ 66% of its normal value. The outer surface of the outer air injection path is integrated inside by maintaining the original length of the cross section, while the unnecessary folded air is injected into the interior of the air bag, This smart air filling type cushioning material manufacturing technology constitutes a big improvement over the existing technologies.

The Confinement Effect on the Shear Stiffness of Inner Shear Connections in Concrete-filled Steel-Concrete Composite Girder (콘크리트로 충지된 강.콘크리트 합성거더의 구속효과가 내부 전단연결부 강도에 미치는 영향)

  • Lee, Sang-Yoon;Kim, Jung-Ho;Lee, Seung-Yong;Park, Kyung-Hoon;Lee, Young-Ho
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.229-232
    • /
    • 2008
  • Researches on the steel-concrete composite girder filled with plain concrete have been being actively performed on the grounds that this type of girder has constructional, structural and aesthetical benefits. As a part of studies on the characteristics of inner shear connections in the concrete-filled steel-concrete composite girder with plain concrete, the confinement effect on the stiffness of inner shear connections was examined in this study. In the case of concrete-filled steel-concrete composite girder, it can be expected that the stiffness of shear connections may be increased in comparison with the case not confined. Therefore, the experimental studies were performed with the confinement effect as a parameter, and the results are discussed in this paper.

  • PDF

Study on the Change of Relative Humidity in Subsea Pipeline According to Drying Method (건조 공법에 따른 해저 파이프라인 내부 상대습도 변화 특성 연구)

  • Yang, Seung Ho
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.28 no.2
    • /
    • pp.406-413
    • /
    • 2022
  • The subsea pipeline pre-commissioning stage consists of the following processes: Flooding, Venting, Hydrotesting, Dewatering, Drying, and N2 Purging. Among these processes, drying and nitrogen purging processes are stipulated to reduce and maintain the relative humidity below dew point to prevent the generation of hydrate and the risk of gas explosion in the pipeline during operation. The purpose of this study is to develop an analysis method for the air drying and nitrogen purging process during pre-commissioning of the subsea pipeline, and to evaluate the applicability of the analysis method through comparison with on-site measurement results. An analysis method using Computational Fluid Dynamics (CFD) was introduced and applied as a method for evaluating the relative humidity inside a subsea pipeline, and it was confirmed that analysis results were in good agreement with the on-site measurement results for the air drying and nitrogen purging process of the offshore pipeline. If the developed air drying and nitrogen purging analysis method are used as pre-engineering tools for pre-commissioning of subsea pipelines in the future, it is expected to have a significant impact on the improvement of work productivity.

Experimental Study on Enhancing Adhesion-Reactive Acrylic Compounds for Pore Filling in Additive Manufactured Metal Lattice Structures (금속 적층 제조 격자 구조체의 공극 충진용 부착력 증진 반응성 아크릴 화합물에 대한 실험적 연구)

  • Park, Kwang-Min;Park, Myung-Ju
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.24 no.5
    • /
    • pp.143-149
    • /
    • 2020
  • The purpose of this study is to manufacture a variable density - hybrid lattice structure control by filling the pore of the metal addictive manufactured lattice structure with lightweight reactive acrylic compounds(RAC). To apply the variable density - hybrid lattice structure to the construction industry, the enhancing adhesion - reactive acrylic compounds(EA-RAC) which increased the adhesion strength was manufactured by adding ordinary portland cement to the RAC. Finally, the EA-RAC was filled into the lattice structure to test the specific density, water absorption, and adhesion strength of the variable density - hybrid lattice structure. The results were obtained with density controllable, water absorption less than 1.0%, and 1-day bonding strength of 1.78 MPa to 1.98 MPa.

Experimental Study on the Performance Improvement of Velcro Reinforcement through Internal Filling (내부충진을 통한 벨크로 보강재의 성능향상에 대한 실험적 연구)

  • Jeong, Yeong-Seok;Kwon, Minho;Kim, Jin-Sup;Nam, Gwang-Sik
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.41 no.4
    • /
    • pp.347-355
    • /
    • 2021
  • During the earthquake, for multi-story structure, if the first floor is soft, the deformation will concentrate on that floor causing a serious damage to the column members which might leads to the collapse of the whole structure like Piloti structure during the Pohang earthquake in Korea. According to the 2016 National Disaster Management Research Institute's "Investigation of Seismic Reinforcement and Cost Analysis of Domestic Non-seismic Buildings", the rate of seismic resistance of private reinforced concrete buildings was 38.3 %. Among them, it was reported that the seismic-resistance ratio of the two to five-story structures was less than 50 %. Accordingly, the government is trying to improve the seismic rate through support projects, but the conventional seismic reinforcement methods are still expensive, and emergency construction is difficult. Therefore, in this study, the field applicability was evaluated by improving the reinforcement method using Velcro, which was developed through the research project of the Ministry of Land, Transport and Maritime Affairs in 2014. In order to improve the performance of the Velcro reinforcement method, introducing the initial tension of Velcro using high foaming rigid urethane filling between the Velcro and concrete of the columns was applied. Additionally, an experiment was conducted to evaluate the ductility of Velcro specimen from the concrete confinement effect. As a result, the ductility of the Velcro specimen was improved compare to Normal specimen. However, the energy dissipation capacity of VELCRO2 is better than VELCRO1, yet the maximum ductility of those two specimens did not show a significant difference. Therefore, the improvement of the internal filler material is still needed to have a better maximum ductility.

Crab shell 충진 칼럼을 이용한 수중 중금속의 연속 제거능 비교에 관한 연구

  • 신주남;김동석
    • Proceedings of the Korean Environmental Sciences Society Conference
    • /
    • 2002.05b
    • /
    • pp.289-295
    • /
    • 2002
  • Crab shell 충진 칼럼을 이용한 수중 중금속의 연속적 제거에 있어서 여러 중금속 ($Pb^{2+}$ , $Cd^{2+}$ , $Cu^{2+}$ , $Cr^{3+}$ )의 제거능 비교와 중금속 제거 전후의 crab shell의 표면 변화를 관찰해 보았다. Crab shell 충진 칼럼의 중금속 제거능을 알아보기 위해, 가장 변화가 많은 1,000 BVs까지의 crab shell g 당 각각 중금속의 제거량을 비교해 보면 $Pb^{2+}$(0.61 mmol/g) > $Cu^{2+}$(0.43 mmol/g) > $Cd^{2+}$(0.38 mmol/g) > $Cr^{3+}$(0.30 mmol/g) 순으로 나타났다. $Cd^{2+}$의 경우는 미세 침전보다는 내부의 화학적 침전이나 물리적 침전에 의한 제거가 더 많이 일어나고 $Pb^{2+}$의 경우는 유출되는 미세 침전량이 전체 제거량 중 26.6 %를 차지 하고 칼럼내 crab shell 표면에서도 다른 중금속들보다 월등히 많은 미세 침전물이 관찰 됨으로 $Pb^{2+}$의 경우는 중금속 제거는 화학적 침전이나 물리적 침전에 따른 미세침전에 의해 많이 이루어지고 있는 것으로 판단된다. $Cu^{2+}$$Cr^{3+}$의 경우, 중금속의 고유 색깔인 청색이 중금슥 제거가 끝난 후 crab shell 표면에 착색된 것을 관찰할 수 있었다. Crab shell 충진 칼럼을 이용한 수중 중금속 제거 후 중금속을 고농도로 수거하기 위한 탈착에 있어서는 초기 20 BVs 내에서 대부분의 중금속이 탈착되어 유출되는 것을 관찰 할 수 있었다.

  • PDF

Relaxation Behavior of Thermo-Plastic Elastomers

  • 도문석;이한섭;서승원
    • Proceedings of the Korean Fiber Society Conference
    • /
    • 1998.10a
    • /
    • pp.203-206
    • /
    • 1998
  • 열가소성 탄성체(Thermoplastic elastomers)의 일종인 polyurethane은 상온보다 높은 유리전이온도(T$_{g}$)를 갖는 hard segment(HS)와 낮은 T$_{g}$를 갖는 soft segment(SS)간의 열역학적 불친화성으로 인해 미세 상분리 구조를 갖는다. SS는 낮은 T$_{g}$로 인해 상온에서 rubbery한 성격을 나타내며 HS는 높은 T$_{g}$로 인해 물리적 가교 역할과 충진제 역할을 한다. Polyurethane은 중합당시의 조성이나 중합방법에 따라 다양한 내부구조를 갖으며 이런 내부구조의 변화에 따른 물리적 성질의 변화 역시 다양하다. (중략)

  • PDF