• Title/Summary/Keyword: 내부만족

Search Result 812, Processing Time 0.028 seconds

A 14b 150MS/s 140mW $2.0mm^2$ 0.13um CMOS ADC for SDR (Software Defined Radio 시스템을 위한 14비트 150MS/s 140mW $2.0mm^2$ 0.13um CMOS A/D 변환기)

  • Yoo, Pil-Seon;Kim, Cha-Dong;Lee, Seung-Hoon
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.45 no.4
    • /
    • pp.27-35
    • /
    • 2008
  • This work proposes a 14b 150MS/s 0.13um CMOS ADC for SDR systems requiring simultaneously high resolution, low power, and small size at high speed. The proposed ADC employs a calibration-free four-step pipeline architecture optimizing the scaling factor for the input trans-conductance of amplifiers and the sampling capacitance in each stage to minimize thermal noise effects and power consumption at the target resolution and sampling rate. A signal- insensitive 3-D fully symmetric layout achieves a 14b level resolution by reducing a capacitor mismatch of three MDACs. The proposed supply- and temperature- insensitive current and voltage references with on-chip RC filters minimizing the effect of switching noise are implemented with off-chip C filters. The prototype ADC in a 0.13um 1P8M CMOS technology demonstrates a measured DNL and INL within 0.81LSB and 2.83LSB, at 14b, respectively. The ADC shows a maximum SNDR of 64dB and 61dB and a maximum SFDR of 71dB and 70dB at 120MS/s and 150MS/s, respectively. The ADC with an active die area of $2.0mm^2$ consumes 140mW at 150MS/s and 1.2V.

A Study on Constructability Estimation of Multi-component High Fluidity Concrete based on Mock-up Test (모의실험체에 의한 다성분계 고유동 콘크리트의 시공성능 평가에 관한 연구)

  • Kwon, Ki-Joo;Noh, Jea-Myoung
    • Journal of the Korea Institute of Building Construction
    • /
    • v.10 no.4
    • /
    • pp.75-82
    • /
    • 2010
  • As structures become larger, taller, and more diverse, a high degree of technology and expertise are required in the construction industry. However, it has been becoming difficult to construct under severe conditions and to fulfill the high performance needs of structures due to a lack of skilled construction engineers. To compensate for these weak points, high-performance concrete and performance specifications have been developed. The application of reliable high-fluidity concrete, which is one of these efforts, is expected to be effective in terms of overcoming severe conditions, reducing the number of workers required, and shortening the construction period. In order to apply high fluidity concrete in the field, practical mock-up tests were carried out to estimate whether self-compaction concrete could satisfy constructability needs. From the results, it was verified that the multi-component high fluidity concrete has excellent flowability in practical structures. In addition, it was shown that the temperature distribution in the concrete due to hydration heat is satisfactory. As a result, it is judged that multi-component high fluidity concrete can be utilized as an effective building material for various structures, including structures related to the electric power industry.

Fuel cell system for SUAV using chemical hydride - II. Lightweight fuel cell propulsion system (화학수소화합물을 이용한 소형 무인항공기용 연료전지 시스템 연구 - II. 경량 연료전지 추진 시스템)

  • Hong, Ji-Seok;Park, Jin-Gu;Sung, Myeong-Hun;Jeon, Chang-Soo;Sung, Hong-Gye;Shin, Seock-Jae;Nam, Suk-Woo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.41 no.3
    • /
    • pp.233-239
    • /
    • 2013
  • A 100 W fuel cell system using chemical storage method has been applied for a propulsion system of the SUAV(Small Unmanned Aerial Vehicle). A fuel cell and battery have been combined for both the small/light hydrogen generation control system and the hybrid power supply system. A small hydrogen generation device was implemented to utilize NaBH4 aqueous solution and dead-end type PEMFC system, which were evaluated on the ground and by the flight tests. The system pressurized at a 45kpa stably operates and get higher fuel efficiency. The pressure inside of the hydrogen generation control system was maintained at between 45 kPa and 55 kPa. The 100W fuel cell system satisfies the required weight and power consumption rate as well as the propulsion system, and the fuel cell system performance was demonstrated through flight test.

The Physical Characteristics of the flow field and the Form of Arrested Salt Wedge (정상 염수쇄기의 형상과 흐름 장의 물리적 특성)

  • 이문옥
    • 한국해양학회지
    • /
    • v.25 no.2
    • /
    • pp.62-73
    • /
    • 1990
  • An experimental study is performed in order to catch the characteristics of the flow field at arrested salt wedge, using a rectangular open channel. Arrested salt wedge is generally so stable that the observations are easy, but velocities and interfacial waves are measured with the aid of visualization method, by injection of fluorescent dyes. The density interface, which is defined as the zone of maximum density variation with depth, exists in about 0.5 cm below the visual interface, and vertical density profile is quite well satisfied with Homeborn model. Interfacial layer has high turbulent intensity and its thickness decreases as the overall Richardson number increases and has magnitude of roughly 17% of upper layer. Cross-sectional velocity distribution just shows the influence of a side-wall friction and in the upper layer vertical velocity profile also becomes uniformly as Reynolds number increases, but in the lower layer it shows nearly parabolic type. Supposes that we divide salt wedge into three domains, that is, river mouth, intermediate and tip zone, entertainment coefficient is small at the intermediate zone and large at the river mouth and the tip zone. River mouth or intermediate zone has comparatively stable interface and capillary wave therefore s produced and propagated downstream. On the other hand, tip zone is very unstable, cusping ripple or bursting ripple is then produced incessantly. Arrested salt wedge form is nearly linear and has no relation to densimetric Froude number and Reynolds number.

  • PDF

Robust Designs of the Second Order Response Surface Model in a Mixture (2차 혼합물 반응표면 모형에서의 강건한 실험 설계)

  • Lim, Yong-Bin
    • The Korean Journal of Applied Statistics
    • /
    • v.20 no.2
    • /
    • pp.267-280
    • /
    • 2007
  • Various single-valued design optimality criteria such as D-, G-, and V-optimality are used often in constructing optimal experimental designs for mixture experiments in a constrained region R where lower and upper bound constraints are imposed on the ingredients proportions. Even though they are optimal in the strict sense of particular optimality criterion used, it is known that their performance is unsatisfactory with respect to the prediction capability over a constrained region. (Vining et at., 1993; Khuri et at., 1999) We assume the quadratic polynomial model as the mixture response surface model and are interested in finding efficient designs in the constrained design space for a mixture. In this paper, we make an expanded list of candidate design points by adding interior points to the extreme vertices, edge midpoints, constrained face centroids and the overall centroid. Then, we want to propose a robust design with respect to D-optimality, G-optimality, V-optimality and distance-based U-optimality. Comparing scaled prediction variance quantile plots (SPVQP) of robust designs with that of recommended designs in Khuri et al. (1999) and Vining et al. (1993) in the well-known examples of a four-component fertilizer experiment as well as McLean and Anderson's Railroad Flare Experiment, robust designs turned out to be superior to those recommended designs.

High Heat-load Slits for the PLS Multi-pole Wiggler (포항방사광가속기의 다극 위글러용 고 열량부하 슬릿)

  • Gil, K.H.;Kim, C.K.;Chung, C.W.
    • Journal of the Korean Vacuum Society
    • /
    • v.16 no.1
    • /
    • pp.46-51
    • /
    • 2007
  • The HFMX((High Flux Macromolecular X-ray crystallography) beamline at Pohang Accelerator Laboratory uses beams from a multi-pole wiggler. Two horizontal and vertical slits relevant to high heat-load are installed at its front-end. In order to treat high heat-load with reducing beam scattering, the horizontal slit has two Glidcop blocks with a grazing incidence angle of $10^{\circ}$ of a grazing-incidence knife-edge configuration. The blocks adjust the slit gap by being translated along guides by two actuating bars, respectively. Water flowing through holes, drilled along the actuating bars, cools the heat-load of both blocks. The vortical slit has the same structure as the horizontal slit except its installation direction with respect to the vacuum chamber and its grazing incidence angle. By virtue of a pair of blocks translating on guides, no alignment between both blocks is required and the installed slits show stable operating performance. The cooling performance of the two slits has been also shown to be acceptable. In this paper, the detailed explanation for the design of the two slits is presented and their operating performance is discussed.

Improvement of Validity and Efficiency for Detection of Cryptosporidium Ocysts and Giardia Cysts in Environmental Water Samples (환경수 중 크립토스포리디움 오시스트 및 지아디아 시스트 검출의 정확도 및 회수율 향상을 위한 연구)

  • 이목영;조은주;김도연;변승헌;이의광;오세종;안승구
    • Korean Journal of Microbiology
    • /
    • v.39 no.1
    • /
    • pp.27-35
    • /
    • 2003
  • No currently available methods to monitor pathogenic protozoa, Cryptosporidium and Giardia in environmental water come close to acceptable sensitivity, specificity and reproducibility, and so it has to be accompanied by thorough quality control and performance evaluation to credibly predict the distribution of them. We collected surface water samples from the Han River and spiked our prepared (oo)cysts, determined Matrix Spike recoveries using USEPA Method 1623 and considered what factors influence MS recovery and validity. As a result, average 46% of spiked oocysts and 60% of spike cysts were recovered, but repetitive sampling and statistical approach seemed to be necessary to determine the environmental pollution level of two protozoa as their variation coefficients was so much as 35oio and 26%. And MS recoveries with two acid dissociations during immunomagnetic separation were improved more 10% than that with one dissociations and the use of spiked suspension enumerated by flow cytometry instead of manual preparation enhanced the validity and reliability in spiking tests. Because fluorescence characteristics of (oo)cysts stained on well slides with FITC-labeled monoclonal antibodies and DAPI was not always same, well Elides from spiked field samples were helpful to evaluate the performance of staining. We found many (oo)cyst-like objects with typical fluorescence, not (co)cysts, from the Han River water samples, and then it was concluded that nuclei staining by DAPI (4',6-diamidino-2-phenylindole) and examination by Differential Interference Contrast Microscope should be critical for valid identification.

Effect of Refinement of Fly Ash on Engineering Properties of Cement Mortar (플라이애시의 정제가 모르타르의 공학적 특성에 미치는 영향)

  • Han, Min-Cheol;Moon, Byeong-Yong
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.5 no.3
    • /
    • pp.275-281
    • /
    • 2017
  • This study is to investigate experimentally the effect of refining of fly ash (FA) on the engineering properties of the cement mortar. Five different FAs are used including raw fly ash, refined fly ash, reject ash and their two different combinations. The cement mortars are fabricated with 1:1(binder to fine aggregate), 1 : 3 and 1 : 5 respectively, which are replaced 30% of FA by cement. Test results, indicated that, the flow of Ra showed lower flowability than Rf at all mixing ratios. Also in the case of Rj, it was expected to show low fluidity, but it showed flowability equal to or higher than Rf. Air contents are all formulations except Rf and Rj did not satisfy the target range. Using Ra, the refining process shows an air amount about 41% lower than Rf, in the case of Rj, it showed about 19% higher air content than Rf due to porous foreign matters inside the mortar. Compressive strength was in the early days 3 and 7, the strength was lower than that of Plain's OPC, after 28 days Rf exerts higher strength than other FAs, it was confirmed that higher strength than OPC can be secured at a mixing ratio of 1: 1 and 1: 3. For frost resistance, the use of unrefined FA resulted in decrease of frost resistance sharply due to loss of air content by the use of unrefined FA. Therefore, it is considered that the use of high quality FA through refining process will contribute positively to the economical formulation of concrete and the stability of the structure.

A Study on the Thermo-Flow Analysis of Air Conditioning Electric Compressor Motor System for Hybrid Electric Vehicles (하이브리드 자동차 에어컨용 전동식 압축기 모터 시스템의 열유동 해석 연구)

  • Kim, Sung Chul
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.2
    • /
    • pp.592-597
    • /
    • 2013
  • The heat generated at the motor and inverter inside the electric compressor of inverter built-in type is mainly cooled by refrigerant and generally, there is not a thermal problem. However, the close relation of heat transfer from the motor and inverter parts to the compression part affects on compressor efficiency. Also, according to the surrounding environment and system operation condition, the increased temperature of the motor and inverter can affect the power density of the motor system, and especially, the inverter may be prevented to operate by the temperature limits. In this study, we performed thermo-flow analysis of electric compressor motor system, and investigated the heat dissipation enhancement of the motor and inverter. The motor part in the operation region of the electric compressor was generally maintained at low temperature and the inverter part at high compressor speed was lower temperature than the temperature limit of $85^{\circ}C$. However, the case of the inverter at low speed harsh condition was in excess of $10^{\circ}C$. Therefore, in order to solve the thermal problem, the heat reduction technology of the motor and inverter is essential as well as the improvement of flow path in the compressor.

A study on nonlinear crash analysis of railway tankcar according to the overseas crashworthiness regulations (해외 충돌안전규정에 따른 유류탱크화차의 비선형충돌해석 연구)

  • Son, Seung Wan;Jung, Hyun Seung;Ahn, Seung Ho;Kim, Jin Sung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.11
    • /
    • pp.843-850
    • /
    • 2020
  • The purpose of this study is to evaluate the structural risk and weakness of a railway tank car through nonlinear collision analysis according to overseas collision safety standards. The goal is to propose a crash safety design guideline for railway tank cars for transporting dangerous goods in Korea. We analyzed the buffer impact test procedure of railway freight cars prescribed in EN 12663-2 and the tank puncture test criteria prescribed in 49CFR179. A nonlinear finite element model according to each standard was modeled using LS-DYNA, a commercial finite element analysis solver. As a result of the buffing impact test simulation, it was predicted that plastic deformation would not occur at a collision speed of 6 km/h or less. However, plastic deformation was detected at the rear of the center sill and at the tank center supporting the structure at a collision speed of 8 km/h or more. As a result of a head-on test simulation of tank puncture, the outer tank shell was destroyed at the corner of the tank head when 4% of the kinetic energy of the impacter was absorbed. The tank shell was destroyed in the area of contact with the impacter in the test mode analysis of tank shell puncture when the kinetic energy of the moving vehicle was reduced by 30%. Therefore, the simulation results of the puncture test show that fracture at the tank shell and leakage of the internal material is expected. Consequently, protection and structural design reinforcement are required on railway tank cars in Korea.