• Title/Summary/Keyword: 낮은선량

Search Result 342, Processing Time 0.032 seconds

A Study of Usefulness for Megavoltage Computed Tomography on the Radiation Treatment Planning (메가볼트 에너지 전산화 단층 촬영을 이용한 치료계획의 유용성 연구)

  • Cho, Jeong-Hee;Kim, Joo-Ho;Khang, Hyun-Soo;Lee, Jong-Seok;Yoo, Beong-Gyu
    • Journal of radiological science and technology
    • /
    • v.33 no.4
    • /
    • pp.369-378
    • /
    • 2010
  • The purpose of this study was to investigate image differences between KVCT vs MVCT depending on a high densities metal included in the phantom and to analyze the r values for the purpose of the dose differences between each methods. We verified the possibilities for clinical indications that using MVCT is available for the radiation therapy treatment planning. Cheese phantom was used to get a density table for each CT and CT sinogram data was transferred to radiation planning computer through DICOM_RT. Using this data, the treatment dose plan has been calculated in RTP system. We compared the differences of r values between calculated and measured values, and then applied this data to the real patient's treatment planning. The contrast of MVCT image was superior to KVCT. In KVCT, each pixel which has more than 3.0 of density was difficult to be differentiated, but in MVCT, more than 5.0 density of pixels were distinguished clearly. With the normal phantom, the percentage of the case which has less than 1($r\leq1$, acceptable criteria) of gamma value, was 94.92% for KVCT and 93.87% for MVCT. But with the cheese phantom, which has high density plug, the percentage was 88.25% for KVCT and 93.77% for MVCT respectively. MVCT has many advantages than KVCT. Especially, when the patient has high density metal, such as total hip arthroplasty, MVCT is more efficient to define the anatomical structure around the high density implants without any artifacts. MVCT helps to calculate the treatment dose more accurately.

Volume Change of Spiral Computed Tomography due to the Changed in the Parameters (파라미터의 변경에 따라 나선형 전산화 단층 촬영의 체적 변화)

  • Lee, JunHaeng
    • Journal of the Korean Society of Radiology
    • /
    • v.7 no.4
    • /
    • pp.307-311
    • /
    • 2013
  • This study examined the change of artifact volume by analyzing the level of image change associated with the setting of threshold through 3D imaging in scan parameter(slice thickness and helical pitch) and 3D image reconstruction to explore whether the presence of pathology was fully distinguished when CT was taken by lower dose than the existent dose to reduce exposure. Furthermore, this study attempted to investigate Scan Parameter acceptable in CT to reduce exposure dose. For materials and methods, silicon was used to produce samples. Five spherical samples were produced at 10-millimeter intervals(50, 40, 30, 20, and 10 mm) in diameter and were fixed at 120 Kvp of tube voltage and 50 mA of tube current. Varied slab thickness((1.0, 2.0, 3.0, 5.0, and 7.0mm) and Helical Pitch(1.5, 2.0, 3.0) were scanned. The image at an interval of 1.0, 2.0, 3.0, 5.0, and 7.0mm was transmitted to the workstation. Threshold(-200, -50, 50 ~ 1,000) was changed using the volume rendering technique, 3D image was reconstructed, and artifact volume was measured. In conclusion, 1.5 of Helical Pitch showed the least change of volume and 3.0 of helical pitch showed the greatest reduction of volume change. The experiment suggested that as slice thickness was increased, artifact volume was decreased more than actual measurement. Furthermore, in the 3D image reconstruction, when the range of threshold was set as -200 ~1,000, artifact volume was changed the least. Based on the results, it is expected to have an effect of reducing exposure dose.

Quality Characteristics of Gamma Irradiated-Imported Orange during Storage (저장기간에 따른 감마선 조사 수입 오렌지의 품질 특성)

  • Kyung, Eun-Ji;Kim, Kyoung-Hee;Yook, Hong-Sun
    • The Korean Journal of Food And Nutrition
    • /
    • v.27 no.1
    • /
    • pp.31-42
    • /
    • 2014
  • This study was conducted to evaluate the effect of gamma irradiation (0.4, 0.6, 0.8, 1 and 1.5 kGy) on the microbiological, physicochemical and sensory qualities of imported orange during storage at $3^{\circ}C$ for 60 days. Total aerobic bacteria and yeast/mold counts in non-irradiated oranges were 3.59 and 3.75 log CFU/g, and those counts in irradiated oranges at 1.5 kGy were decreased by 1.75 and 2.26 log CFU/g, respectively. Moreover, those counts were decreased significantly according to a dose-dependent manner after gamma irradiation. The pH revealed no significant difference between the control and irradiated samples; however, titratable acidity was decreased significantly according to a dose-dependent manner and storage time. The vitamin C contents were decreased significantly according to a dose-dependent manner and storage time after gamma irradiation. Further, sensory evaluation testing revealed no significant difference between the control and irradiated samples, except 1.5 kGy. Samples irradiated at 1.5 kGy had the lowest values in color, sweetness, sourness, flavor, texture and overall acceptance. The results suggest that gamma irradiation was effective for ensuring microbiological safety; however, irradiated oranges at 1 and 1.5 kGy did not have good physicochemical and sensory qualities. Therefore, we can use the sample irradiated at 0.4~0.6 kGy as optimum-dose to be minimize on quality changes.

Quality Characteristics of Low-Dose Electron Beam Irradiated-Imported Navel Orange during Storage at Low Temperature (3°C) (저선량 전자선 조사 수입 오렌지의 저온 저장 중 품질 특성)

  • Cho, Yun-Jeong;Kim, Kyung-Hee;Yook, Hong-Sun
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.44 no.1
    • /
    • pp.128-136
    • /
    • 2015
  • This study investigated the effects of low-dose electron beam irradiation treatment on physicochemical and sensorial properties of imported navel oranges during storage at $3^{\circ}C$ for 45 days. The samples were irradiated at doses of 0.2, 0.4, 0.6, 0.8, and 1.0 kGy, and changes in their color values, hardness, Brix/acid ratio, total sugar contents, reducing sugar contents, vitamin C contents, and sensory evaluation were investigated. There were no significant differences between non-irradiated and irradiated samples in terms of color values, Brix/acid ratio, total sugar contents, total reducing sugar contents, and vitamin C contents. Hardness of irradiated sample at 1 kGy decreased significantly in the early storage period, but the difference between non-irradiated and irradiated samples decreased again at the end of storage. For the sensory evaluation, scores of color, sweetness, flavor, and overall acceptability decreased as irradiation dose and storage period increased. Samples irradiated at over 0.8 kGy showed low preference in all scores except color. These results suggest that electron beam irradiation below 0.6 kGy does not affect physicochemical and sensory properties; thus, electron beam irradiation up to 0.6 kGy in imported navel oranges is optimum for minimizing quality changes and disinfestation treatment simultaneously.

Screening Assessment of Radiological Effect From Clearance of Decommissioning Concrete Waste Based Upon Recycling Framework of Construction Waste in Korea (국내 건설폐기물 재활용 체계를 반영한 해체 콘크리트 폐기물 자체처분 방사선 영향 예비평가)

  • Lim, Kun-Su;Cheong, Jae Hak;Whang, Joo Ho
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.16 no.4
    • /
    • pp.441-454
    • /
    • 2018
  • Since the permanent shutdown of Kori Unit 1 in 2017, a full-scale decommissioning project for a commercial nuclear reactor has been approaching. It is estimated that about 160,000 t of low-activity concrete waste will be produced from decommissioning of one unit of this commercial nuclear power reactor. Accordingly, it is necessary to review whether the effectiveness of the current regulatory framework for clearance waste (i.e. waste stream that meets activity concentration guidelines or dose criteria for clearance set forth in NSSC Notice No. 2017-65) can be maintained for the clearance of a bulk amount of concrete waste. In this regard, the IAEA SRS No. 44, which was used as a basis for revision of the Korean clearance regulations, is thoroughly analyzed and the radiological effects from four different clearance scenarios, along with input values and parameters derived from industrial practices in Korea, were evaluated. Though it is shown that the maximum annual dose from most recycling scenarios will be less than the clearance dose criterion for the normal scenario (i.e. an order of magnitude of $0.01mSv{\cdot}y^{-1}$), the radiation dose, estimated with conservative assumptions for the banking scenario, may exceed the above clearance dose criteria. Therefore, for safe and sustainable clearance of the bulk amount of concrete waste, it is required to diversify the concrete waste processors, perform more detailed site-specific assessment, and apply limiting conditions to the banking scenario.

Effects of Single Vessel PCI (Percutaneous Coronary Intervention) using DCR (Dynamic Coronary Road map) on Fluoroscopy Time and Patient Radiation (동적 심혈관 로드맵을 이용한 중재적 시술이 투시 시간 및 환자 피폭에 미치는 영향)

  • Jong-Gil Kwak;Young-Hyun Seo
    • Journal of the Korean Society of Radiology
    • /
    • v.17 no.4
    • /
    • pp.551-556
    • /
    • 2023
  • Angiography equipment is used to evaluate and treat coronary artery disease. As a common feature of equipment, radiation is used, and function development for dose reduction is being carried out by each company. Therefore, the difference depending on whether DCR installed in angiography equipment is used is analyzed from a radiological point of view to prove the effect. Among 431 patients who underwent coronary artery intervention from March 2021 to February 2023, 250 patients with retrospective data were selected. And than among the 250 subjects obtained, 91 patients used the cardiovascular roadmap function during single-vessel intervention, and 159 patients did not use the roadmap. When DCR was used, total dose area product (34.57 uGy/m2 : 69.15 uGy/m2), total air kerma dose (688.47 mGy : 1640.4 mGy), fluoroscopy dose (23.87 uGy/m2 : 49.91 uGy/m2) and fluoroscopy time (723.55 s : 366.03 s), total number of images (17 : 26) showed lower values and were statistically significant than those not used. The use of DCR function in single vessel coronary intervention is thought to be radiologically safer as single vessel coronary intervention using dynamic cardiovascular DCR showed lower perspective time and perspective dose than procedures performed without the DCR.

Effect of Microwave Treatment on the Physicochemical and Microbiological Characteristics of Beef Loin during Storage at 4℃ (마이크로파 처리가 4℃ 저장 중 우육의 이화학적 및 미생물학적 특성에 미치는 영향)

  • Kang, Ho Jin;Lee, Hyun-Yu;Park, Jong-Dae;Kum, Jun-Seok
    • Korean Journal of Food Science and Technology
    • /
    • v.45 no.2
    • /
    • pp.161-166
    • /
    • 2013
  • This study was carried out to investigate the physicochemical and microbiological characteristics of beef loin following microwave treatment at $4^{\circ}C$. Two types of microwave treatment were applied. i.e., continued microwave treatment (CW) and holding microwave treatment (HW). The L value increased, while a and b values were not significantly different among the samples as the storage time and microwave dose increased. The initial pH and after 3 days ranged from 5.51-5.74 and 6.32-6.51, respectively (p<0.05). The thiobarbituric acid value of all beef loins increased with increasing storage period and decreased with increasing microwave dose. The volatile basic nitrogen (VBN) content of the control was higher than that of the other samples and the VBN content decreased with increasing microwave dose. The total plate count of beef loins decreased with increasing microwave dose. This result indicated that T2 (100 W, HW) is most effective treatment with regard to the safety of beef loins without decreasing the physicochemical and microbiological characteristics.

Estimation of Jaw and MLC Transmission Factor Obtained by the Auto-modeling Process in the Pinnacle3 Treatment Planning System (피나클치료계획시스템에서 자동모델화과정으로 얻은 Jaw와 다엽콜리메이터의 투과 계수 평가)

  • Hwang, Tae-Jin;Kang, Sei-Kwon;Cheong, Kwang-Ho;Park, So-Ah;Lee, Me-Yeon;Kim, Kyoung-Ju;Oh, Do-Hoon;Bae, Hoon-Sik;Suh, Tae-Suk
    • Progress in Medical Physics
    • /
    • v.20 no.4
    • /
    • pp.269-276
    • /
    • 2009
  • Radiation treatment techniques using photon beam such as three-dimensional conformal radiation therapy (3D-CRT) as well as intensity modulated radiotherapy treatment (IMRT) demand accurate dose calculation in order to increase target coverage and spare healthy tissue. Both jaw collimator and multi-leaf collimators (MLCs) for photon beams have been used to achieve such goals. In the Pinnacle3 treatment planning system (TPS), which we are using in our clinics, a set of model parameters like jaw collimator transmission factor (JTF) and MLC transmission factor (MLCTF) are determined from the measured data because it is using a model-based photon dose algorithm. However, model parameters obtained by this auto-modeling process can be different from those by direct measurement, which can have a dosimetric effect on the dose distribution. In this paper we estimated JTF and MLCTF obtained by the auto-modeling process in the Pinnacle3 TPS. At first, we obtained JTF and MLCTF by direct measurement, which were the ratio of the output at the reference depth under the closed jaw collimator (MLCs for MLCTF) to that at the same depth with the field size $10{\times}10\;cm^2$ in the water phantom. And then JTF and MLCTF were also obtained by auto-modeling process. And we evaluated the dose difference through phantom and patient study in the 3D-CRT plan. For direct measurement, JTF was 0.001966 for 6 MV and 0.002971 for 10 MV, and MLCTF was 0.01657 for 6 MV and 0.01925 for 10 MV. On the other hand, for auto-modeling process, JTF was 0.001983 for 6 MV and 0.010431 for 10 MV, and MLCTF was 0.00188 for 6 MV and 0.00453 for 10 MV. JTF and MLCTF by direct measurement were very different from those by auto-modeling process and even more reasonable considering each beam quality of 6 MV and 10 MV. These different parameters affect the dose in the low-dose region. Since the wrong estimation of JTF and MLCTF can lead some dosimetric error, comparison of direct measurement and auto-modeling of JTF and MLCTF would be helpful during the beam commissioning.

  • PDF

Comparison and Evaluation of radiotherapy plans by multi leaf collimator types of Linear accelerator (선형가속기의 다엽콜리메이터 형태에 따른 치료계획 비교 평가)

  • Lim, Ji Hye;Chang, Nam Joon;Seok, Jin Yong;Jung, Yun Ju;Won, Hui Su;Jung, Hae Youn;Choi, Byeong Don
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.30 no.1_2
    • /
    • pp.129-138
    • /
    • 2018
  • Purpose : An aim of this study was to compare the effect of multi leaf collimator(MLC) types for high dimension radiotherapy in treatment sites used clinically. Material and Method : 70 patients with lung cancer, spine cancer, prostate cancer, whole pelvis, head and neck, breast cancer were included in this study. High definition(HD) MLC of TrueBeam STx (Varian Medical system, Palo Alto, CA) and millenium(M) MLC of VitalBeam (Varian Medical system, Palo Alto, CA) were used. Radiotherapy plans were performed for each patient under same treatment goals with Eclipse (Version 13.7, Varian Palo Alto USA, CA). To compare the indicators of the radiotherapy plans, planning target volume(PTV) coverage, conformity index(CI), homogeneity index(HI), and clinical indicators for each treatment sites in normal tissues were evaluated. To evaluate low dose distribution, $V_{30%}$ values were compared according to MLC types. Additionally, length and volume of targets for each treatment sites were investigated. Result : In stereotatictic body radiotherapy(SBRT) plan for lung, the average value of PTV coverage was reduced by 0.52 % with HD MLC. With SBRT plan using HD MLC for spine, the average value of PTV coverage decreased by 0.63 % and maximum dose decreased by 1.13 %. In the test of CI and HI, the values in SBRT plan with HD MLC for spine were 1.144, 1.079 and the values using M MLC were 1.160, 1.092 in SBRT plan for lung, The dose evaluation of critical organ was reduced by 1.48 % in the ipsilateral lung mean dose with HD MLC. In prostate cancer volumetric modulated arc therapy(VMAT) with HD MLC, the mean dose and the $V_{30}$ of bladder and the mean dose and the $V_{25}$ of rectum were reduced by 0.53 %, 1.42 %, 0.97 %, and 0.69 %, respectively (p<0.05). The average value of heart mean dose was reduced by 0.83 % in breast cancer VMAT with M MLC. Other assessment indices for treatment sites showed no significant difference between treatment plans with two types of MLC. Conclusion : Using HD MLC had a positive impact on the PTV coverage and normal tissue sparing in usually short or small targets such as lung and spine SBRT and prostate VMAT. But, there was no significant difference in targets with long and large such as lung, head and neck, and whole pelvis for VMAT.

  • PDF

Examination of Dose Change at the Junction at the Time of Treatment Using Multi-Isocenter Volumetric Modulated Arc Therapy (용적조절호형방사선치료(VMAT)의 다중치료중심(Multi- Isocenter)을 이용한 치료 시, 접합부(Junction)의 선량 변화에 대한 고찰)

  • Jung, Dong Min;Park, Kwang Soon;Ahn, Hyuk Jin;Choi, Yoon Won;Park, Byul Nim;Kwon, Yong Jae;Moon, Sung Gong;Lee, Jong Oon;Jeong, Tae Sik;Park, Ryeong Hwang;Kim, Se young;Kim, Mi Jung;Baek, Jong Geol;Cho, Jeong Hee
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.33
    • /
    • pp.9-14
    • /
    • 2021
  • This study examined dose change depending on the reposition error of the junction at the time of treatment with multi-isocenter volumetric modulated arc therapy. This study selected a random treatment region in the Arccheck Phantom and established the treatment plan for multi-isocenter volumetric modulated arc therapy. Then, after setting the error of the junction at 0 ~ 4 mm in the X (left), Y (upper), and Z (inner and outer) directions, the area was irradiated using a linear accelerator; the point doses and gamma indexes obtained through the Phantom were subsequently analyzed. It was found that when errors of 2 and 4 mm took place in the X and Y directions, the gamma pass rates (point doses) were 99.3% (2.085) and 98% (2.079 Gy) in the former direction and 98.5% (2.088) and 95.5% (2.093 Gy) in the latter direction, respectively. In addition, when errors of 1, 2, and 4 mm occurred in the inner and outer parts of the Z direction, the gamma pass rates (point doses) were found to be 94.8% (2.131), 82.6% (2.164), and 72.8% (2.22 Gy) in the former part and 93.4% (2.069), 90.6% (2.047), and 79.7% (1.962 Gy) in the latter part, respectively. In the X and Y directions, errors up to 4 mm were tolerable; however, in the Z direction, error values exceeding 1 mm were beyond the tolerance level. This suggests that for high and low dose areas, errors in the direction same as the progress direction in the treatment region have a more sensitive dose distribution. If the guidelines for set-up errors are established at the institutional level through continuous research in the future, it will be possible to provide good quality treatment using junctions.