• Title/Summary/Keyword: 납-적층고무받침

Search Result 9, Processing Time 0.024 seconds

Compression and Shear Capacity of Rubber Bearings with Various Geometric Parameters (다양한 기하학적 인자를 고려한 고무받침의 압축 및 전단 내력)

  • Park, Ji Yong;Kim, Joo Woo;Jung, Hie Young
    • Journal of Korean Society of Steel Construction
    • /
    • v.26 no.6
    • /
    • pp.559-570
    • /
    • 2014
  • In this study, compression and shear characteristics of laminated rubber bearings and lead rubber bearings with various parameters are investigated by using material and geometric nonlinear three-dimensional finite element analysis. Rubber coupon tests are performed to make a model of the laminated rubber bearings. In addition, the material constants of the rubber are calculated by the curve fitting process of stress-strain relationship. The finite element analysis and experimental tests of the laminate rubber bearings are used to verify the validity of the rubber material constants. It is seen that the compression behavior of the laminated rubber bearings and lead rubber bearings mainly varies depending on the first shape factors and their shear behavior significantly varies depending on the second shape factors. In addition, the horizontal stiffness and energy dissipation capacity of lead rubber bearing are increased when the diameter of a lead bar is increased.

Pseudo-Dynamic Test for the Bridges Retrofitted with Laminated Rubber Bearings (적층고무받침으로 내진보강된 교량의 유사동적실험)

  • Kwak, Im-Jong;Cho, Chang-Beck;Han, Kyoung-Bong;Kim, Young-Jin;Kwak, Jong-Won
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.9 no.1 s.41
    • /
    • pp.43-50
    • /
    • 2005
  • Many highway bridges in Korea need seismic retrofit because only one decade has passed since the seismic design criteria was introduced. For the highway bridges of which bearings are worn and dysfunctional, the validity of seismic retrofit method using laminated rubber bearings was discussed in this study. Real scale RC pier specimens without seismic details were constructed. And then, Pot bearing, Rubber bearing (RB), Lead-rubber bearing (LRB) were applied to these specimens. Through pseudo dynamic test method, dynamic behavior of these RC piers under earthquake was simulated and compared. From the test results, proposed seismic retrofit method was found to be valid.

A Study on Isolation Performance of High Damping Rubber Bearing Through Shaking Table Test and Analysis (진동대 실험 및 해석을 통한 고감쇠 고무받침의 면진성능 연구)

  • Kim, Hu-Seung;Oh, Ju
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.5
    • /
    • pp.601-611
    • /
    • 2016
  • The research, development and use of seismic isolation systems have been increasing with the gradual development of structure safety assurance methods for earthquakes. The High Damping Rubber Bearing (HDRB), one type of seismic isolation system, is a Laminated Rubber Bearing using special High Damping Rubber. However, as its damping function is slightly lower than that of the Lead Rubber Bearing, a similar seismic isolation system, its utilization has not been high. However, the HDRB has a superior damping force to the Natural Rubber Bearing, which has similar materials and shapes, and the existing Lead Rubber Bearing has a maleficence problem in that it contains lead. Thus, studies on HDRBs that do not use lead have increased. In this study, a test targeting the HDRB was done to examine its various dependence properties, such as its compressive stress, frequency and repeated loading. To evaluate the HDRB's seismic performance in response to several earthquake waves, the shaking table test was performed and the results analyzed. The test used the downscaled bridge model and the HDRB was divided into seismic and non-seismic isolation. Consequently, when the HDRB was applied, the damping effect was higher in the non-seismic case. However, its responses on weak foundations, such as in Mexico City, represented increased shapes. Thus, its seismic isolator.

The Pseudo-Dynamic Test for the Seismic Retrofit System Utilizing Existing Bridge Bearings (교량의 기존 받침을 활용하는 내진보강시스템의 유사동적 실험)

  • Kwahk, Im-Jong;Cho, Chang-Beck;Kim, Young-Jin;Kwark, Jong-Won
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.11 no.1 s.53
    • /
    • pp.21-27
    • /
    • 2007
  • In this study, an approach that installs seismic isolation bearings was proposed for the seismic retrofit of the existing bridges. The method that replaces all existing bearings with seismic isolators was proposed already. However, in this study, we recommend to utilize the existing bearings for the benefit of safety and cost. According to our proposal, the seismic isolators do not support vertical loads but they Just function as the period shifter and the horizontal damper. To verify this approach experimentally, the real scale bearings and lead rubber bearings far the real highway bridges were designed and fabricated. And the responses of this isolated bridges to the assumed earthquakes were determined by the pseudo dynamic test scheme. The test results were also compared to the responses computed by the well known structural analysis software to check the reliability of the test. From the test results, we found that the retrofitted bridges using the proposed method showed stable performances under earthquakes.

An Experimental Study for the Shear Property and the Temperature Dependency of Seismic Isolation Bearings (지진격리받침의 전단특성 및 온도의존성에 대한 실험적 연구)

  • Cho, Chang-Beck;Kwahk, Im-Jong;Kim, Young-Jin
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.12 no.1
    • /
    • pp.67-77
    • /
    • 2008
  • Seismic isolation has been studied continuously as a solution of the seismic engineering to reduce the sectional forces and the damages of structures caused by earthquakes. To certify reliable design and installation of the seismic isolation systems, seismic isolation bearings should be fabricated under well planned quality control process, and proper evaluation tests for their seismic performance should be followed. In this study, shear property evaluation tests for the lead rubber bearings(LRB) and the rubber bearings(RB) were implemented and the temperature dependency tests were also implemented to evaluate the changes of shear properties according to the changes of temperature. After evaluation tests, the measured shear properties were compared to their design values and their deviation was analyzed comparing with the allowable error ranges specified in Highway Bridge Design Specifications. These results showed that a considerable number of isolation bearings have so large deviations from their design values that their error ranges were over or very close to the allowable ranges. And the test results for temperature dependency showed that the shear properties of isolation bearings would be changed in great degree by the change of temperature during their service period. If these two types of changes in their shear properties are superposed, it would possible that the changes of shear properties from their original design values are over than 50%.

Seismic Behavior and Estimation for Base Isolator Bearings with Self-centering and Reinforcing Systems (자동복원 및 보강 시스템과 결합된 면진받침의 지진거동과 평가)

  • Hu, Jong Wan
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.35 no.5
    • /
    • pp.1025-1037
    • /
    • 2015
  • Flexible base isolation bearings that separate superstructure from ground have been widely used in the construction field because they make a significant contribution to increasing the fundamental period of the structure, thereby decreasing response acceleration transmitted into the superstructure. However, the established bearing devices installed to uphold the whole building give rise to some problems involved with failure and collapse due to lack of the capacity as modern structures are getting more massive and higher. Therefore, this study suggests new isolation bearings assembled with additional restrainers enabled to reinforcing and recentering, and then evaluates their performance to withstand the seismic load. The superelastic shape memory alloy (SMA) bars are installed into the conventional lead-rubber bearing (LRB) devices in order to provide recentering forces. These new systems are modeled as component spring models for the purpose of conducting nonlinear dynamic analyses with near fault ground motion data. The LRB devices with steel bars are also designed and analyzed to compare their responses with those of new systems. After numerical analyses, ultimate strength, maximum displacement, permanent deformation, and recentering ratio are compared to each model with an aim to investigate which base isolation models are superior. It can be shown that LRB models with superelastic SMA bars are superior to other models compared to each other in terms of seismic resistance and recentering effect.

Experimental Study on the Temperature Dependency of Full Scale Low Hardness Lead Rubber Bearing (Full-scale 저경도 납면진받침의 온도의존성에 대한 실험적 연구)

  • Park, Jin Young;Jang, Kwang-Seok;Lee, Hong-Pyo;Lee, Young Hak;Kim, Heecheul
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.25 no.6
    • /
    • pp.533-540
    • /
    • 2012
  • Rubber laminated bearings with lead core are highly affected by changes in temperature because key materials which are rubber and lead have temperature dependencies. In this study, two full scale LRB(D800, S=5) are manufactured and temperature dependency tests on shear properties are accomplished. The shear properties at the 3rd cycle are used at $-10^{\circ}C$, $0^{\circ}C$, $10^{\circ}C$, $20^{\circ}C$, $30^{\circ}C$, $40^{\circ}C$ respectively. The double shear configuration, simultaneously testing two pieces, is applied for compression shear test in order to minimize the friction effects due to the test machine, described in ISO 22762-1:2010. Characteristic strength, post-yield stiffness, effective stiffness, equivalent damping ratio are estimated and presented coefficient due to the temperature changes.

Seismic Stability and Fatigue Performance Test of Lead Rubber Bearings (납-적층고무받침의 지진안정성 및 피로거동 실험)

  • Cho, Chang-Beck;Kwahk, Im-Jong;Kim, Young-Jin;Kwark, Jong-Won;Cho, Hae-Jin
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2006.03a
    • /
    • pp.537-544
    • /
    • 2006
  • In this study, performance level evaluation tests have been actually performed on laminated rubber seismic isolation bearings (LRB) made in Korea. To provide basic data for setting up fabrication criteria and performance evaluation criteria three real scale LRB were tested and the test results were analysised. Accordingly, a large capacity test device has been designed and manufactured to implement the tests. The device selected for evaluation is a circular LRB actually applied in bridges. Evaluation tests were conducted using full-scale LRB with diameter of 851mm in the rubber part and total height of 215mm of which the effective horizontal stiffness and equivalent damping ratio have been measured during the experiments.

  • PDF

Analyses of Vertical Seismic Responses of Seismically Isolated Nuclear Power Plant Structures Supported by Lead Rubber Bearings (납적층고무받침(LRB)으로 지지된 면진 원전 구조물의 수직방향 지진응답 분석)

  • Cho, Sung Gook;Yun, Sung Min;Kim, Dookie;Hoo, Kee Jeung
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.19 no.3
    • /
    • pp.133-143
    • /
    • 2015
  • It is very important to assure the seismic performance of equipment as well as building structures in seismic design of nuclear power plant(NPP). Seismically isolated structures may be reviewed mainly on the horizontal seismic responses. Considering the equipment installed in the NPP, the vertical earthquake responses of the structure also should be reviewed. This study has investigated the vertical seismic demand of seismically isolated structure by lead rubber bearings(LRBs). For the numerical evaluation of seismic demand of the base isolated NPP, the Korean standard nuclear power plant (APR1400) is modeled as 4 different models, which are supported by LRBs to have 4 different horizontal target periods. Two real earthquake records and artificially generated input motions have been used as inputs for earthquake analyses. For the study, the vertical floor response spectra(FRS) were generated at the major points of the structure. As a results, the vertical seismic responses of horizontally isolated structure have largely increased due to flexibility of elastomeric isolator. The vertical stiffness of the bearings are more carefully considered in the seismic design of the base-isolated NPPs which have the various equipment inside.