• Title/Summary/Keyword: 납차폐

Search Result 148, Processing Time 0.03 seconds

Analysis of Dose Rates from Steam Generators to be Replaced from Kori Unit 1 (고리 1호기 교체 증기발생기의 선량률 분석)

  • Shin, Sang-Woon;Son, Jung-Kwon;Cho, Chan-Hee;Song, Myung-Jae
    • Journal of Radiation Protection and Research
    • /
    • v.23 no.3
    • /
    • pp.175-184
    • /
    • 1998
  • In order to calculate dose rates from steam generators to be replaced from Kori unit 1 in 1998, radionuclide inventories inside steam generator were evaluated from smear test results and measured dose rates from S/G tubes withdrawn for the metallographical examination of damaged tubes. Based on the inventories, contact dose rates and dose rates at 1 m from the surface of a steam generator were calculated using the QAD-CG computer code. Contact dose rates ranged from 11.5 mR/hr at the bottom of channel head to 37.7 mR/hr at the middle of shell barrel, and showed no significant difference with dose rates at 1 m from the surface of steam generator. Shielding effects of lead and carbon steel were compared to provide basic shielding data. Lead shield showed excellent shielding effects. Dose rate at 1 m from the middle of S/G shell barrel decreased from 38.6 mR/hr to 15.5 mR/hr with the lead shield of 2 mm thickness. However, carbon steel showed a poor shielding effect even with the thickness of 2.0 cm. This can be explained with the great differences in the attenuation effect and buildup factor between lead and carbon steel for low energy photons.

  • PDF

Reduced Effect of kV-CBCT Dose by Use of Shielding Materials in Radiation Therapy (방사선 치료 시 차폐물질 사용에 따른 kV-CBCT 선량감소 효과)

  • Jo, Hyeonjong;Park, Euntae;Kim, Junghoon
    • Journal of the Korean Society of Radiology
    • /
    • v.12 no.4
    • /
    • pp.467-474
    • /
    • 2018
  • CBCT is useful for improving the accuracy of the treatment site, but Repeated use increases the exposure dose. In this study, we aimed to provide basic data for dose reduction in CBCT implementation by dataization the simulating and dose reduction effect using shielding substance. Material in this study, Analyzation the photon beam by simulate the CBCT Through MCNPX and then calculate the absorption dose of body organ at shooting moment of thoracic abdominal position as target UF-Revise simulated body. At this time. Dose reduction effects at this time were evaluated according to the texture of materials and presence of shielding materials( lead, antimony, barium, sulfate, tungsten, bismuth). When CBCT was taken without shielding, the dose was calculated to be high in the breast and spine, and the dose in the esophagus and lung was calculated to be low. The doses according to the shield material were calculated as barium sulfate, antimony, bismuth, lead, and tungsten. The shielding rate was the highest in the thymus (73.6%) and the breast (59.9%) compared with the dose reduction according to presence or absence of the shield. However, it showed the lowest shielding rate in lung (2.1%) and spine (12.6%).

The study on the scattering ratio at the edge of the block according to the increasing block thickness in electron therapy (전자선 치료 시 차폐블록 두께 변화에 따른 블록 주변 선량에 관한 연구)

  • Park, Zi On;Gwak, Geun Tak;Park, Ju Kyeong;Lee, Seung Hun;Kim, Yang Su;Kim, Jung Soo;Kwon, Hyoung Cheol;Lee, Sun Young
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.31 no.1
    • /
    • pp.57-65
    • /
    • 2019
  • Purpose: The purpose is to clarify the effect of additional scattering ratio on the edge of the block according to the increasing block thickness with low melting point lead alloy and pure lead in electron beam therapy. Methods and materials: $10{\times}10cm^2$ Shielding blocks made of low melting point lead alloy and pure lead were fabricated to shield mold frame half of applicator. Block thickness was 3, 5, 10, 15, 20 (mm) for each material. The common irradiation conditions were set at 6 MeV energy, 300 MU / Min dose rate, gantry angle of $0^{\circ}$, and dose of 100 MU. The relative scattering ratio with increasing block thickness was measured with a parallel plate type ion chamber(Exradin P11) and phantom(RW3) by varying the position of the shielding block(cone and on the phantom), the position of the measuring point(surface ans depth of $D_{max}$), and the block material(lead alloy and pure lead). Results : When (depth of measurement / block position / block material) was (surface / applicator / pure lead), the relative value(scattering ratio) was 15.33 nC(+0.33 %), 15.28 nC(0 %), 15.08 nC(-1.31 %), 15.05 nC(-1.51 %), 15.07 nC(-1.37 %) as the block thickness increased in order of 3, 5, 10, 15, 20 (mm) respectively. When it was (surface / applicator / alloy lead), the relative value(scattering ratio) was 15.19 nC(-0.59 %), 15.25 nC(-0.20 %), 15.15 nC(-0.85 %), 14.96 nC(-2.09 %), 15.15 nC(-0.85 %) respectively. When it was (surface / phantom / pure lead), the relative value(scattering ratio) was 15.62 nC(+2.23 %), 15.59 nC(+2.03 %), 15.53 nC(+1.67 %), 15.48 nC(+1.31 %), 15.34 nC(+0.39 %) respectively. When it was (surface / phantom / alloy lead), the relative value(scattering ratio) was 15.56 nC(+1.83 %), 15.55 nC(+1.77 %), 15.51 nC(+1.51 %), 15.42 nC(+0.92 %), 15.39 nC(+0.72 %) respectively. When it was (depth of $D_{max}$ / applicator / pure lead), the relative value(scattering ratio) was 16.70 nC(-10.87 %), 16.84 nC(-10.12 %), 16.72 nC(-10.78 %), 16.88 nC(-9.93 %), 16.90 nC(-9.82 %) respectively. When it was (depth of $D_{max}$ / applicator / alloy lead), the relative value(scattering ratio) was 16.83 nC(-10.19 %), 17.12 nC(-8.64 %), 16.89 nC(-9.87 %), 16.77 nC(-10.51 %), 16.52 nC(-11.85 %) respectively. When it was (depth of $D_{max}$ / phantom / pure lead), the relative value(scattering ratio) was 17.41 nC(-7.10 %), 17.45 nC(-6.88 %), 17.34 nC(-7.47 %), 17.42 nC(-7.04 %), 17.25 nC(-7.95 %) respectively. When it was (depth of $D_{max}$ / phantom / alloy lead), the relative value(scattering ratio) was 17.45 nC(-6.88 %), 17.44 nC(-6.94 %), 17.47 nC(-6.78 %), 17.43 nC(-6.99 %), 17.35 nC(-7.42 %) respectively. Conclusions: When performing electron therapy using a shielding block, the block position should be inserted applicator rather than the patient's body surface. The block thickness should be made to the minimum appropriate shielding thickness of each corresponding using energy. Also it is useful that the treatment should be performed considering the influence of scattering dose varying with distance from the edge of block.

Protection effect of metal balls against high energy photon beams (고에너지 광자선에 대한 금속구의 차폐효과)

  • 강위생;강석종
    • Progress in Medical Physics
    • /
    • v.9 no.3
    • /
    • pp.137-141
    • /
    • 1998
  • The purposes of this report are to evaluate whether lead ball and steel ball could be used as protective material of radiation and to acquire physical data of them for protecting 4-10 MV X-ray beams. Lead balls of diameter 2.0~2.5mm or steel balls of diameter 1.5~2.0 mm were filled in an acrylic box of uniform width. An MV radiograph of metal balls in a box were taken to ascertain uniformity of ball distribution in the box. Average density of metal ball and linear attenuation coefficient of metal balls for 4~10 MV X -rays were measured. At the time of measurement of linear attenuation coefficient, Farmer ionization chamber was used and to minimize the scatter effect, distance between the ball and the ionization chamber was 70 cm and field size was 5.5cm${\times}$5.5cm. For comparison, same parameters of lead and steel plates were measured. The distribution of metal balls was uniform in the box. The density of a mixture of lead-air was 6.93g/cm$^3$, 0.611 times density of lead, and the density of a mixture of steel-air was 4.75g/cm$^3$, 0.604 times density of steel. Half-value layers of a mixture of lead-air were 1.89 cm for 4 MV X-ray, 2.07 cm for 6 MV X-ray and 2.16 cm for 10 MV X-ray, and approximately 1.64 times of HVL of lead plate. Half-value layers of a mixture of steel-air were 3.24 cm for 4 MV X-ray, 3.70 cm for 6 MV X-ray and 4.15 cm for 10 MV X-ray, and approximately 1.65 times of HVL of lead plate. Metal balls can be used because they could be distributed evenly. Average densities of mixtures of lead-air and steel-air were 6.93g/cm$^3$, 4.75g/cm$^3$ respectively and approximately 1.65 times of densities of lead and steel. Product of density and HVL for a mixture of metal-air are same as the metal.

  • PDF

A Study on Barium Mixed Radiation Shield using 3D Printer (3D 프린터를 이용한 바륨혼합형 차폐체에 대한 연구)

  • Gang, Heon-Hyo;Kim, Dong-Hyun
    • Journal of the Korean Society of Radiology
    • /
    • v.14 no.5
    • /
    • pp.627-634
    • /
    • 2020
  • Instead of lead, we intend to develop shielding materials for morphological implementation by mixing barium sulfate, an eco-friendly substance, and PLA filament, a 3D printer material. The environmental substance, barium sulfate powder and PLA filament, a 3D printer material, were used, and the shielding was made with a 3D printer after being fused into an extruder to mix the powder powder of barium sulfate with PLA. To check the mixing ratio of barium sulfate powder and PLA filament, the mixing input was analyzed, and the absorption dose by thickness according to barium sulfate content was obtained to check the shielding function of the mixed shielding. In the evaluation of the mixture of sulfate barium powder particles and PLA filaments, it was mixed in the most appropriate proportion when the content was 30% in the apparent and electron microscopic observation photographs. In the absorption dose results by thickness according to barium sulfate content, the difference between the content of 0% and the content of each % was greatest at 0.5 cm in thickness and the lowest dose value at 3 cm in thickness when the barium content was 30%. In addition, as the barium content began to increase at 30%, the absorbed dose value increased again. Instead of conventional lead, barium sulfate, an eco-friendly substance, could be mixed with PLA, a filament material, to create morphological shielding. Based on this study, it is expected that the mixing ratio of barium to the mixture is the most appropriate 30%, and will be used as the basis for the implementation of morphological shielding using 3D printers in the diagnosis and treatment section.

Improvement of the shieldability and lightweight of a radiation protective apron (방사선 방호용 에이프런의 경량화와 차폐능 개선)

  • Kim, Young-Keun;Jang, Young-Ill;Kim, Jung-Min
    • Journal of radiological science and technology
    • /
    • v.26 no.1
    • /
    • pp.45-50
    • /
    • 2003
  • In this work, we characterized the shieldability and lightweight of radiation protective aprons which were consisted of various metal(Pb, Sn, Ni, Ti and Cu) by measuring the x-ray dose transmitted through the filters. The transmitted ratio and lead equivalent of various metal were obtained by linear interpolation and the lead equivalent of double layered filters contained Pb layer was determined. The transmitted ratio of the apron(0.25 mmPb) specified in KS B 0845 was 5.2%. The transmitted ratio of the filters at the thickness of 0.6 mm was decreased in the other of Ni(32.60%), Ti(17.75%), Cu(13.25%) and Sn(3.84%). From the results of experimental evaluation for combined filter of Pb and Sn, it was founded that in the case of the first Sn layer, the lead equivalent was higher than that of the first Pb layer. The lead equivalent corresponding to apron of 0.25 mmPb was obtained in the double layered filters of Sn(0.19 mm) - Pb(0.1 mm) and Pb(0.1 mm) - Sn(0.37 mm). Thus, the Sn-Pb filter had the lower weight about 13% than apron of 0.25 mmPb.

  • PDF

A Evaluation of Shielding Deficiency by Means of Gamma Scanning Test (Gamma Scanning Test에 의한 대단위 차폐체의 결함 평가 연구)

  • Lee, B.J.;Seo, K.W.
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.14 no.4
    • /
    • pp.228-236
    • /
    • 1995
  • In this paper the method to evaluate shielding deficiency by gamma scanning test was presented and verified theoretically by Monte Carlo code which is one of the best effective method for radiation shielding calculation. The cylindrical shielding model was selected to evaluate shielding deficiency by gamma scanning test. First, the reference shielding according to the design requirement of cask was fabricated specially and reference values were measured with Co-60 source and scintillation detector. As a result with which calculated the reference values, it is shown that maximum deficiency thickness for lead of true cylindrical shielding model was 12mm. To verify this, thickness of lead was calculated by MCNP code and maximum deficiency thickness was 11.6mm. The experimental result obtained by the use of reference shielding was in good agreement with the theoretical result within 4.1%. So, this method can be applied to inspect the shielding ability for great shielding or cask which the radioactive material is used. To perform measurement more exactly, the further work on the development of measuring equipment to display the results on the screen will be required.

  • PDF

Evaluation of the Usefulness of the Transmittance of Metal Filaments Fabricated by 3D Printers in Radiation Therapy (방사선 치료에서 3D 프린터로 제작된 금속 필라멘트의 투과율에 관한 유용성 평가)

  • Kwon, Kyung-Tae;Jang, Hui-Min;Yoon, Myeong-Seong
    • Journal of the Korean Society of Radiology
    • /
    • v.15 no.7
    • /
    • pp.965-973
    • /
    • 2021
  • Since radiation therapy is irradiated with high-energy X-rays in a variety of at least 20 Gy to 80 Gy, a high dose is administered to the local area where the tumor is located, and various side effects of some normal tissues are expected. Currently, in clinical practice, lead, a representative material, is used as an effort to shield normal tissues, but lead is classified as a heavy metal harmful to the human body, and a large amount of skin contact can cause poisoning. Therefore, this study intends to manufacture a measurement sheet that can compensate for the limitations of lead using the materials Tungsten, Brass, and Copper of the 3D printer of the FDM (Fused Deposition Modeling) method and to investigate the penetration performance. Tungsten mixed filament transmission measurement sheet size was 70 × 70 mm and thickness 1, 2, 4 mm using a 3D printer, and a linear accelerator (TrueBeam STx, S/N: 1187) was measured by irradiating 100 MU at SSD 100 cm and 5 cm in water using a water phantom, an ion chamber (FC-65G), and an elcetrometer (PTW UNIDOSE), and the permeability was evaluated. As a result of increasing the measurement sheet of each material by 1 mm, in the case of Tungsten sheet at 3.8 to 3.9 cm in 6 MV, the thickness of the lead shielding body was thinner than 6.5 cm, and in case of Tungsten sheet at 4.5 to 4.6 cm in 15 MV. The sheet was thinner than the existing lead shielding body thickness of 7 cm, and equivalent performance was confirmed. Through this study, the transmittance measurement sheet produced using Tungsten alloy filaments confirmed the possibility of transmission shielding in the high energy region. It has been confirmed that the usability as a substitute is also excellent. It is thought that it can be provided as basic data for the production of shielding agents with 3D printing technology in the future.

Shielding Analysis of the Material and Thickness of Syringe Shield on the Radionuclide (방사성 핵종별 주사기 차폐기구의 재질 및 두께에 대한 차폐분석)

  • Cho, Yong-In;Kim, Chang-Soo;Kang, Se-Sik;Kim, Jung-Hoon
    • The Journal of the Korea Contents Association
    • /
    • v.15 no.7
    • /
    • pp.282-288
    • /
    • 2015
  • A monte carlo simulation about shielding material and thickness of the syringe shield for radiation shield was performed. As a result of analysis, high atomic number materials such as tungsten, lead and bismuth have the highest shielding effect. However, $^{18}F$, $^{67}Ga$ and $^{111}In$ show high energy distribution in the region with thin shielding thickness. As the thickness of shielding materials increased, the energy distribution decreased due to reduction of ${\gamma}$-ray. In the case of low atomic number materials, they, showed energy distribution from highest to lowest, were barium sulfate, steel, stainless, iron and copper. Aluminum, plastic, concrete and water showed diverse aspect. they showed relatively high energy distribution because of increased ${\gamma}$-ray that penetrate the shield.

Study on the Development of an Outdoor Radiographic Test Shield Using 3D Printer Filament Materials (3D 프린터 필라멘트 재료를 이용한 야외 방사선투과검사용 차폐체 개발을 위한 연구)

  • Mun, Ik-Gi;Shin, Sang-Hwa
    • Journal of the Korean Society of Radiology
    • /
    • v.13 no.4
    • /
    • pp.565-572
    • /
    • 2019
  • In this study, shielding analysis of material and thickness of 3D printer filaments was performed for the manufacture of custom shielding by radiation workers during outdoor radiographic test. The shielding was attached to the ICRU Slab Phantom after selecting the voxel source $^{192}Ir$ and $^{75}Se$ through simulation using MCNPX, and the distance between the source and the slab Phantom was set at 100 cm. The 12 shielding materials were divided into 5 mm units up to 200 mm from the absence of shielding materials to evaluate the energy absorbed per unit mass of each shielding material. The results showed that the shielding effect was high in the order of ABS + Tungsten, ABS + Bismuth, PLA + Copper, PLA + Iron from all sources of radiographic test. However, compared to lead, the shielding effect was somewhat lower. Based on this study in the future, further study of the atomic number and the high density filament material is necessary.