• Title/Summary/Keyword: 날씨 분류

Search Result 50, Processing Time 0.027 seconds

Weather Classification and Fog Detection using Hierarchical Image Tree Model and k-mean Segmentation in Single Outdoor Image (싱글 야외 영상에서 계층적 이미지 트리 모델과 k-평균 세분화를 이용한 날씨 분류와 안개 검출)

  • Park, Ki-Hong
    • Journal of Digital Contents Society
    • /
    • v.18 no.8
    • /
    • pp.1635-1640
    • /
    • 2017
  • In this paper, a hierarchical image tree model for weather classification is defined in a single outdoor image, and a weather classification algorithm using image intensity and k-mean segmentation image is proposed. In the first level of the hierarchical image tree model, the indoor and outdoor images are distinguished. Whether the outdoor image is daytime, night, or sunrise/sunset image is judged using the intensity and the k-means segmentation image at the second level. In the last level, if it is classified as daytime image at the second level, it is finally estimated whether it is sunny or foggy image based on edge map and fog rate. Some experiments are conducted so as to verify the weather classification, and as a result, the proposed method shows that weather features are effectively detected in a given image.

Road Sign Detection with Weather/Illumination Classifications and Adaptive Color Models in Various Road Images (날씨·조명 판단 및 적응적 색상모델을 이용한 도로주행 영상에서의 이정표 검출)

  • Kim, Tae Hung;Lim, Kwang Yong;Byun, Hye Ran;Choi, Yeong Woo
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.4 no.11
    • /
    • pp.521-528
    • /
    • 2015
  • Road-view object classification methods are mostly influenced by weather and illumination conditions, thus the most of the research activities are based on dataset in clean weathers. In this paper, we present a road-view object classification method based on color segmentation that works for all kinds of weathers. The proposed method first classifies the weather and illumination conditions and then applies the weather-specified color models to find the road traffic signs. Using 5 different features of the road-view images, we classify the weather and light conditions as sunny, cloudy, rainy, night, and backlight. Based on the classified weather and illuminations, our model selects the weather-specific color ranges to generate Gaussian Mixture Model for each colors, Green, Yellow, and Blue. The proposed method successfully detects the traffic signs regardless of the weather and illumination conditions.

Development of Deep Learning Structure to Secure Visibility of Outdoor LED Display Board According to Weather Change (날씨 변화에 따른 실외 LED 전광판의 시인성 확보를 위한 딥러닝 구조 개발)

  • Sun-Gu Lee;Tae-Yoon Lee;Seung-Ho Lee
    • Journal of IKEEE
    • /
    • v.27 no.3
    • /
    • pp.340-344
    • /
    • 2023
  • In this paper, we propose a study on the development of deep learning structure to secure visibility of outdoor LED display board according to weather change. The proposed technique secures the visibility of the outdoor LED display board by automatically adjusting the LED luminance according to the weather change using deep learning using an imaging device. In order to automatically adjust the LED luminance according to weather changes, a deep learning model that can classify the weather is created by learning it using a convolutional network after first going through a preprocessing process for the flattened background part image data. The applied deep learning network reduces the difference between the input value and the output value using the Residual learning function, inducing learning while taking the characteristics of the initial input value. Next, by using a controller that recognizes the weather and adjusts the luminance of the outdoor LED display board according to the weather change, the luminance is changed so that the luminance increases when the surrounding environment becomes bright, so that it can be seen clearly. In addition, when the surrounding environment becomes dark, the visibility is reduced due to scattering of light, so the brightness of the electronic display board is lowered so that it can be seen clearly. By applying the method proposed in this paper, the result of the certified measurement test of the luminance measurement according to the weather change of the LED sign board confirmed that the visibility of the outdoor LED sign board was secured according to the weather change.

Classification of Freeway Traffic Condition by the Impacts of Road Weather Factors (도로기상요인의 영향에 따른 고속도로 교통상황 유형 분류)

  • Shim, Sangwoo;Choi, Keechoo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.6D
    • /
    • pp.685-691
    • /
    • 2009
  • The purpose of this paper is to classify the traffic condition in freeway by the impacts of road weather. The factor analysis showed that weather factors, which are considered as influential, are identified as weather condition (rain or clear), temperature and sight distance with RWIS and VDS data in Seohae bridge used. The result of ANOVA shows that weather is dividedinto clear and rainy; temperature into below and equal or above $5^{\circ}C$ and sight distance into below or equal or above 10km. Based on those factors, the freeway traffic condition has been classified as five different types. The flow-speed model for each traffic conditions was proposed, which was not significant due to the lack of smaple data. Although not sufficient, the methodology to categorize traffic situation model presented in this paper may shed light on the idea for the future and can be used for proper traffic management for each weather condition.

Extraction of Water Area using Artificial Neural Network from Satellite Imagery and DEM (신경망 알고리즘을 이용한 위성영상과 DEM으로부터의 수계지역 추출)

  • Sohn, Hong-Gyoo;Jung, Won-Jo;Yoo, Hwan-Hee;Song, Yeong-Sun
    • 한국지형공간정보학회:학술대회논문집
    • /
    • 2002.11a
    • /
    • pp.51-57
    • /
    • 2002
  • 국내에서 활발하게 연구되고 있는 위성영상을 이용한 원격탐사는 매핑, 환경관리, 시설물 관리 등에 이용되어 왔다. 본 연구에서는 날씨나 태양의 제약을 받지 않는 RADARSAT SAR 영상의 수계지역을 신경망 기법을 이용하여 분류하고자 하였다. RADARSAT은 경사관측을 통하여 영상을 취득하며 지형의 기복에 의한 음영효과(Shadow effect)로 인하여 수계지역 분류시 정확도를 감소시킨다. 이러한 문제를 해결하기 위해서 본 연구에서는 RADARSAT SAR 영상의 역산란계수를 계산하고 음영효과에 의한 분류오류를 감소시키기 위하여 수치고도모형을 사용하였다. 지형의 기복이 작은 평지와 지형의 기복이 심한 산악지로 나누어 연구를 수행하여 각 지역별로 분류 정확도를 평가하였다. 연구결과로 역산란계수를 신경망기법의 단일 입력 자료로 사용한 경우보다 수치고도모형을 같이 사용한 것이 분류 정확도가 높았다. 또한, 수치고도모형을 역산란계수와 함께 입력 자료로 이용할 경우 평지보다 산악지에서 효율적이었다. 산악지역이 많은 국내에서는 SAR영상의 수계지역 추출을 신경망 기법으로 할 경우에는 수치고도모형을 함께 이용함으로써 분류정확도 향상을 시킬 수 있다고 사료된다.

  • PDF

A Study of Personal Inclimation Based Electrocardigram Reactions Using Sound Stimulation (음원자극에 따른 개인 성향 기반 심전도의 반응 연구)

  • Jang, Gye-Sun;Park, Sun-Hee;Ko, Il-Ju
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2008.06a
    • /
    • pp.343-350
    • /
    • 2008
  • 사람들은 다양한 매체를 통하여 음악을 청취하고 있으며, 느낌별, 장르별, 연령별, 날씨별, 시간별, 장소별, 상황별, 직업별, 악기별, 템포별 등으로 다양한 분류 방법으로 음악을 제공받고 있다. 이는 음악을 분류하는 방법들이 음악 자체에 대한 분석이나 음악을 듣는 환경에 대한 분류로만 제공되고 있기 때문이다. 같은 상황, 환경이라도 개인에 따라서 같은 음악을 듣더라도 다른 감정의 상태를 나타내기 때문에, 개인을 고려한 분류 방법이 요구된다. 본 논문에서는 인간의 성격을 통해 감정의 표현 방식에 차이가 있다는 면을 초점으로 접근하였다. 감정이 미치는 심전도에 미치는 영향과 음악이 신체와 감정에 미치는 영향들을 통해 심전도를 이용하여 개인의 성향에 따른 음원자극에 대한 반응 차이를 통해 개인의 성향이 반영된 분류 방법을 제시하고자 했다.

  • PDF

A Hierarchical CPV Solar Generation Tracking System based on Modular Bayesian Network (베이지안 네트워크 기반 계층적 CPV 태양광 추적 시스템)

  • Park, Susang;Yang, Kyon-Mo;Cho, Sung-Bae
    • Journal of KIISE:Software and Applications
    • /
    • v.41 no.7
    • /
    • pp.481-491
    • /
    • 2014
  • The power production using renewable energy is more important because of a limited amount of fossil fuel and the problem of global warming. A concentrative photovoltaic system comes into the spotlight with high energy production, since the rate of power production using solar energy is proliferated. These systems, however, need to sophisticated tracking methods to give the high power production. In this paper, we propose a hierarchical tracking system using modular Bayesian networks and a naive Bayes classifier. The Bayesian networks can respond flexibly in uncertain situations and can be designed by domain knowledge even when the data are not enough. Bayesian network modules infer the weather states which are classified into nine classes. Then, naive Bayes classifier selects the most effective method considering inferred weather states and the system makes a decision using the rules. We collected real weather data for the experiments and the average accuracy of the proposed method is 93.9%. In addition, comparing the photovoltaic efficiency with the pinhole camera system results in improved performance of about 16.58%.

Music Recommendation System Using Extended Collaborative Filtering Based On Emotion & Context Information Fusion (감성 및 상황 정보 융합 기반의 확장된 협업 필터링 기법을 이용한 음악추천시스템)

  • Choi, Hyunsuk;Bae, Hyochul;Seo, Jungjin;Yoon, Kyoungro
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2011.07a
    • /
    • pp.82-84
    • /
    • 2011
  • 본 논문에서는 사용자의 개인적 취향에 맞는 음악을 추천할 수 있는 사용자 감성/상황 정보 융합 기반의 협업 필터링의 확장을 이용한 음악추천시스템을 소개한다. 본 논문에서 제안하는 시스템은 확장된 협업 필터링 방식을 사용하여 추천을 해준다. 이를 위해 본 논문에서는 추천의 근거가 되는 감성과 무드를 Thayer 음악 무드 모델을 이용하여 총 12 가지의 감성 정보, 8 cluster 의 무드 정보로 분류했다. 또한 사용자의 상황 정보, 활동 & 날씨 & 시간에 대해서도 분류하였다. 분류된 정보는 음악감상 UI 를 이용하여 사용자 별 감성, 상황 그리고 음원의 무드 정보로 수집이 되었고, 수집된 정보를 기반으로 사용자 감성과 청취 곡 횟수를 퓨전하여 평가치 매트릭스를 만들었으며, 이를 바탕으로 단계적 협업 필터링에 의해 사용자 취향에 맞는 음악을 추천해 주는 방법이다.

  • PDF

The Recognition and Normalization of Korean Temporal Expression for Question-Answering System (질의-응답 시스템을 위한 한국어 시간 표현의 인식 및 정규화)

  • Yoon, Do-Sang;Lee, Do-Gil;Chung, Hoo-Jung;Rim, Hea-Chang
    • Annual Conference on Human and Language Technology
    • /
    • 2004.10d
    • /
    • pp.46-52
    • /
    • 2004
  • 본 논문에서는 질의-응답 시스템의 질의에서 많이 나타나는 시간 표현을 인식하고, 인식한 시간 표현에 대해서 정규화 하는 방법을 제안한다. 본 논문에서 사용하는 질의-응답 시스템의 도메인은 TV방송 스케줄, 날씨 정보이며, 이러한 도메인에서는 시간 표현이 매우 빈번하게 사용되기 때문에 질의에 나타나는 시간 표현을 정확하게 인식해서 정규화 하는 것이 중요하다. 제안하는 방법은 시간 표현을 의미와 기능에 따라 분류하고 각 유형마다 적절한 인식 및 정규화 기법을 사용한다. 질의에서 시간 표현은 시간 개체명 태거. 품사 태거, 시간 파서를 사용하여 인식하고, 시간 추론기와 시간 표현 사전을 이용하여 정규화 한다. TV방송 스케줄과 날씨 정보 도메인의 280개 질의에서 184개의 시간표현을 이용하여 평가한 결과, 시간 표현의 인식과 정규화는 각각 93%와 96%의 정확률, 97%와 93%의 재현율을 보였다.

  • PDF

Weather Classification and Image Restoration Algorithm Attentive to Weather Conditions in Autonomous Vehicles (자율주행 상황에서의 날씨 조건에 집중한 날씨 분류 및 영상 화질 개선 알고리듬)

  • Kim, Jaihoon;Lee, Chunghwan;Kim, Sangmin;Jeong, Jechang
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2020.11a
    • /
    • pp.60-63
    • /
    • 2020
  • With the advent of deep learning, a lot of attempts have been made in computer vision to substitute deep learning models for conventional algorithms. Among them, image classification, object detection, and image restoration have received a lot of attention from researchers. However, most of the contributions were refined in one of the fields only. We propose a new paradigm of model structure. End-to-end model which we will introduce classifies noise of an image and restores accordingly. Through this, the model enhances universality and efficiency. Our proposed model is an 'One-For-All' model which classifies weather condition in an image and returns clean image accordingly. By separating weather conditions, restoration model became more compact as well as effective in reducing raindrops, snowflakes, or haze in an image which degrade the quality of the image.

  • PDF