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SUMMARY
 With the advent of deep learning, a lot of attempts have been made in computer vision to substitute deep 

learning models for conventional algorithms. Among them, image classification, object detection, and image 
restoration have received a lot of attention from researchers. However, most of the contributions were refined 
in one of the fields only. 

 We propose a new paradigm of model structure. End-to-end model which we will introduce classifies noise 
of an image and restores accordingly. Through this, the model enhances universality and efficiency. Our 
proposed model is an 'One-For-All' model which classifies weather condition in an image and returns clean 
image accordingly. By separating weather conditions, restoration model became more compact as well as 
effective in reducing raindrops, snowflakes, or haze in an image which degrade the quality of the image.

1. INTRODUCTION
    Among the many factors which degrade the quality of 
images, weather induced noises such as raindrops, snowflakes, 
and haze seriously distort and blur images. However, 
recovering from weather-induced noises received significantly 
less attention compared to restoration of images from artificial 
noises such as JPEG blocking effect and Gaussian noise. 
    Autonomous vehicles rely on numerous sensors, radar, 
and cameras. Among the detection sensors, cameras provide 
the most accurate information; however, they prove not to be 
so reliable under severe weather conditions. One possible 
solution for the problem would be restoring images distorted 
by raindrops, snowflakes, or haze. Restoration algorithm could 
further be enhanced if the algorithm classifies weather 
condition of the image prior to restoration. In that way, we 
saves computing time and resources from being wasted on 
restoring clear images which already provide enough visuality.

    One of the challenges in building a model which restores 
images from natural noises is the lack of training data. It is 
virtually impossible to acquire both clean images and raining 
images without any changes in the background. Therefore, we 
had to resort to weather dataset with artificial raindrops, 
snowflakes, and haze.
    In this paper, we used MobileNets [1] layers for 
classification and U-Net [2] for restoration. Once a weather 
condition in an image is specified by the classification model, 
it will be fed as an input to the restoration model. We trained 
three different restoration models for rain, snow, and haze 
respectively. Our model showed peak signal-to-noise ratio 
(PSNR) and structural similarity (SSIM) which do not pale in 
comparison to many other cutting-edge restoration models. 
Moreover, our model is more compact than other cutting-edge 
models. With less computations, our model outperforms other 
models in efficiency. Considering that, the model is suitable for 
many autonomous vehicles where computation speed is 
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crucial.
2. DEEP LEARNING MODEL
A. Classification
Model Architecture
    Our model for classification is a four-layer MobileNet 
classifier. MobileNet was adopted instead of conventional 
convolutional layers to reduce computation time by lowering 
dimension of computation. MobileNets compute in two 
separate steps. Depthwise convolution ignores nearby pixels 
and two dimensional convolution over each feature map. Due 
to this, the number of parameters of our classifier is 682,264 
which is relatively low.
    Our initial model needed to pay more attention to the sky, 
which contains significant portion of weather condition. We 
added two extra feature maps to the model which are as 
follows. Overall architecture is illustrated in Fig. 1.
1)  Edge components are extracted from a image since rain 
streaks and snowflakes increase edge components. On the 
contrary, hazy images barely possess any edge features. Fig. 2 
shows distinctness of hazy images in edge maps.
2)  In contrast to common RGB color space, HSV color space 
separates image luminance from color information. With HSV, 
importance to a specific color is emphasized., highlighting one 
color while attenuating the others.

Training
    We used MWI Dataset [3], [4] which has four weather 
classes: rainy, snowy, hazy, and sunny. We used 14,000 images 
for training and 1,200 for validation. We trained 35 epochs 
using cross entropy loss function.
Result
    We tested the model on 400 images. The accuracy of our 
model is accuracy 0.859. Considering compactness of our 
model, it is pretty accurate. Accuracy and loss is shown in Fig. 
3 for first 25 epochs. 

B. Restoration
Model Architecture
    Our model for restoration is multi-scale [5] U-shaped 
network and overall architecture is shown in Fig. 4. 
Multi-scale structure has shown its effectiveness in many 
image reconstruction projects. It extracts features from 
different scales offering richer feature representations. 
Moreover, U-shaped architecture has two halves. First half is 
responsible for feature extraction and second half is 
responsible for representation. Two halves are symmetric and 
each layer is connected to its counterpart. The model has both 
long and short connects to prevent gradient vanishing. 
    For dehazing model, we preprocessed input data before 

Figure 3. Validation accuracy and loss (left). Training 
accuracy and loss (right).

Figure 1. The overall architecture of our classifier model.

Figure 4. U-Net model architecture. 

Figure 2. Hazy, snowy, and rainy images with their edge 
maps.
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the deep learning model. Dark channel algorithm [6] restores 
images noting to the fact that pixels without haze possess low 
luminance at least at one of their RGB channels. Once 
preprocessing is done images will be scaled to 1 and 1/2 for 
multi-scale image training. To make bottleneck shapes of two 
models equal, each scaled image is fed into downsampling 
layers of U-shaped network with slightly different filter sizes. 
In the bottleneck, features of half-scaled models are added to 
the non-scaled model to enrich feature maps.
    We also added dilated convolutional layers in the 
bottleneck to enlarge receptive fields from the feature maps. 
This will ensure the latter part of the model to construct 
complex edge structures more accurately. Then the model 
begins upsampling to construct clean images. In the last layer, 
the number of filters in feature maps is reduced to three to 
convert them into images with RGB channels. 

Training
    Each model for dehazing, deraining, and desnowing shares 
the same architecture, except for loss functions and data 
preprocessing such as dark channel algorithm. In dehazing 
model, we used conventional mean squared error loss (1) as 
well as SSIM loss (2) because maximizing SSIM enhances the 
quality of restored images seen by human eyes.
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    Edge loss (3) is included for deraining and desnowing 
model in contrast to dehazing model. This is because both rain 
and snow images show strong edge properties. 
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    For deraining, we used 1,600 images for training. Our 
dataset for deraining is composed of Rain 12,600 dataset from 
PreNet [7] and derain dataset from ID-CGAN [8]. For dehazing, 
we used 3018 OTS (Outdoor Training Set) from RESIDE dataset 
[9]. For desnowing, we used 6,400 images from Desnownet 
dataset [10]. Each model was trained for 25-35 epochs with 
Adam optimizer and PSNR metrics.

Result
    PSNR and SSIM of our model outperformed any other 
conventional models as shown in Table 1, 2, and 3. Fig. 5 
shows some refined images produced by the model. Our model 

significantly curtailed the number of parameters  in 
reconstruction models. In Table 4, our model possesses 
parameters 6% that of our counterpart, U-Net. In case of 
classification, our number of parameters is 37% that of 
VGG-16 and less than 1% that of ResNet 150. With reduced 
parameters, Table 5 shows that our model processes a frame 
less than a second. By classifying noises prior to 
reconstruction we built a improved model with decent 
accuracy and speed.

Table 1. PSNR and SSIM of our derain model on Test100 

dataset with other models.

Table 2. PSNR and SSIM of our dehaze model on RESIDE 

outdoor dataset with other models.

Figure 5. Rainy, snowy, and hazy images (left). Clear 

DerainNet
[11]

RESCAN 
[12]

DIDMDN 
[13]

UMRL 
[14]

PSNR 22.77 25.00 22.56 24.41
SSIM 0.81 0.83 0.81 0.82

SEMI [15] [7] Ours
PSNR 22.35 24.81 27.43
SSIM 0.78 0.85 0.80

[6] AOD-Net [16] DehazeNet [17]
PSNR 19.13 20.29 22.46
SSIM 0.81 0.87 0.85

GFN [18] Ours
PSNR 21.55 25.18
SSIM 0.84 0.94
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images produced by our models (right).
Table 3. PSNR and SSIM of our desnow model on 
Snow100K-L dataset with other models.

Table 4. Comparison of the number of parameters.

Table 5. Image processing time of our model.
Model Processing time per image (sec) Input size
Derain 0.58 512 x 380
Dehaze 0.48 240 x 240
Desnow 0.31 400 x 400

3. CONCLUSION
    Classifying the weather condition prior to reconstruction 
enabled us to build reconstruction model specialized for 
removing noises from the weather condition. Our model is an 
'One-for-All' model which restores images regardless of the 
weather condition, unlike other deraining, dehazing, and 
desnowing models which focus on only one weather condition.
    Our model was trained with synthetic dataset, where 
raindrops, snowflakes, and haze are quite different from those 
we see in real life. For this reason, the model shows 
unsatisfactory performance on real life images or videos. 
Therefore, we will implement an unsupervised model with real 
life dataset for our future work.
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Ours 682,264 Ours 3,200,920

[11] [17] Ours
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