• Title/Summary/Keyword: 날개 운동학

Search Result 48, Processing Time 0.023 seconds

Atmospheric Icing Effects on the Aerodynamic Characteristics and Performance of Wind Turbine Blade (풍력 블레이드의 결빙에 의한 공력특성 및 성능 변화)

  • Park, Ji-Ho;Myong, Rho-Shin
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.42 no.2
    • /
    • pp.134-143
    • /
    • 2014
  • A significant degradation in the aerodynamic performance of wind turbine system can occur by ice accretion on the surface of blades operated in cold climate. The ice accretion can result in performance loss, overloading due to delayed stall, excessive vibration associated with mass imbalance, ice shedding, instrumental measurement errors, and, in worst case, wind turbine system shutdown. In this study, the effects of ice accretions on the aerodynamic characteristics of wind turbine blade sections are investigated on the basis of modern CFD method. In addition, the computational results are used to predict the performance of three-dimensional wind turbine blade system through the blade element momentum method. It is shown that the thickness of ice accretion increases from the root to the tip and the effects of icing conditions such as relative wind velocity play significant role in the shape of ice accretion.

Development of Flight Control System for Gliding Guided Artillery Munition - Part II : Guidance and Control (유도형 활공 탄약 비행제어시스템 개발 Part II : 유도 및 제어)

  • Lim, Seunghan;Pak, Changho;Cho, Changyeon;Bang, Hyochoong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.42 no.3
    • /
    • pp.229-236
    • /
    • 2014
  • In this paper, the guidance laws and controllers for the gliding guided artillery munition is studied. The gliding guided artillery munition has wings for gliding to increase a range; therefore previous guidance laws and controllers for the guided munition could not be applied. Concepts of vector field guidance and proportional navigation guidance are applied for mid-term and terminal guidance, respectively. The gliding guided artillery munition is operated within wide altitude and speed areas; therefore, the controllers are designed for each area, and gain-scheduling and the linear interpolation technique is applied to compute the appropriate gains.

A Study on the Performance Estimation and Shape Design of a Counter-Rotating Tidal Current Turbine (상반전 조류발전 터빈의 형상설계 및 성능예측에 관한 연구)

  • Kim, Mun-Oh;Kim, You-Taek;Lee, Young-Ho
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.20 no.5
    • /
    • pp.586-592
    • /
    • 2014
  • This study looks at the design of a 100 kW blade geometry for a horizontal marine current turbine using the Blade Element Momentum Theory (BEMT) and by using (CFD), the power output, performance and characteristics of the the fluid flow over the blade is estimated. Three basic airfoils; FFA-W3-301, DU-93-W210 and NACA-63418, are used along the blade span and The distribution of the chord length and twist angles along the blade are obtained from the hydrodynamic optimization procedure. The power coefficient curve shows maximum peak at the rated tip speed ratio of 5.17, and the maximum power reaches about 101.82 kW at the power coefficient of 0.495.

Formation Mechanism of Recumbent Fold observed in the Bangrim-ri, Pyeongchang-gun, Korea (평창군 방림리에 발달하는 횡와습곡의 형성 기작)

  • Cheon, Youngbeom;Kang, Hee-Cheol;Ha, Sangmin;Lee, Sun-Kap;Son, Moon;Ryoo, Chung-Ryul
    • The Journal of the Petrological Society of Korea
    • /
    • v.28 no.3
    • /
    • pp.217-225
    • /
    • 2019
  • This study describes a large recumbent fold, which occurs at the north entrance slope of the Batjae tunnel, Pyeongchang-gun, Gangwon-do, and interprets its formation mechanism. The several-hundred-meter scale fold, developed in the Jeongseon Limestone of the Paleozoic Joseon Supergroup, has a nearly horizontal axial plane and its head is facing north. Stretching lineations ($L_1$) observed on the composite foliations of bedding and axial plane cleavage plunge southward at about $10^{\circ}$. Small A-type or eye-shaped sheath folds together with S-shaped asymmetrical folds are often observed in the fold limbs and their axes are nearly parallel to the lineations ($L_1$) within center and rear parts of the fold. It is thus interpreted that the recumbent fold is a large sheath fold produced by the top-to-the-north ductile shearing due to the Songrim orogeny during the late Paleozoic to Triassic.

Design and Test of Lateral/Directional Control Law of a Tailless UAV Using Spoilers (스포일러를 이용한 무미익 항공기의 횡방향축 제어기설계 및 시험)

  • Hong, Jin-sung;Hwang, Sun-yu;Lee, Kwang-hyun;Hur, Gi-bong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.47 no.6
    • /
    • pp.422-428
    • /
    • 2019
  • A tailless or Blended-Wing-Body(BWB) shaped configuration is highlighted for UCAV with low RCS characteristics. The BWB configuration is characterized by its directional static instability and low controllability. To control the directional movement of the BWB configured vehicle, directional thrust vectoring equipment or drag rudder typed control surfaces which utilize the drag differences of the wing can be considered. This paper deals with a BWB shaped configuration using a spoiler and describes the lateral-directional aerodynamic characteristics of the vehicle. In addition, it is shwon that the lateral-directional motion can be controlled effectively by using the classical PI control structure. This control law is verified by flight test and showed adequate for the tailless BWB shaped UAV.

Effect on the Activity and Ratio of the Serratus Anterior, Pectoralis Major, and Upper Trapezius according to the Angle of Abduction and External Weight During Shoulder Protraction Exercise for Winged Scapular Subjects (날개 어깨뼈 대상자들에게 어깨 내밈 운동시 벌림 각도와 외부 무게에 따른 앞톱니근, 큰가슴근, 위 등세모근의 활성도 및 비율에 미치는 영향)

  • BadamKhorl, Yadam;Kim, Tae-ho;Park, Han-kyu
    • Physical Therapy Korea
    • /
    • v.26 no.3
    • /
    • pp.1-10
    • /
    • 2019
  • Background: Winged scapular (WS) causes muscle imbalance with abnormal patterns when moving the arm. In particular, the over-activation of the upper trapezius (UT) and decrease in activity of the lower trapezius (LT) and serratus anterior (SA) produce abnormal scapulohumeral rhythm. Therefore, the SA requires special attention in all shoulder rehabilitation programs. In fact, many previous studies have been devoted to the SA muscle strength training needed for WS correction. Objects: The purpose of this study was to investigate the effect of shoulder girdle muscle and ratio according to the angle of shoulder abduction and external weight in supine position. Methods: Twenty three WS patients participated in this experiment. They performed scapular protraction exercise in supine position with the weights of 0 kg, 1 kg, 1.5 kg, and 2 kg at shoulder abduction angles of $0^{\circ}$, $30^{\circ}$, $60^{\circ}$, and $90^{\circ}$. The angle and weight applications were randomized. Surface electromyography (EMG) was used to collect the EMG data of the SA, pectoralis major (PM), and UT during the exercise. The ratio of PM/SA and UT/SA was confirmed. Two-way repeated analyses of variance were used to determine the statistical significance of SA, PM, and UT and the ratios of PM/SA and UT/SA. Results: There was a significant difference in SA according to angle (p<.05). Significant differences were also identified depending on the angle and weight (p<.05). The angle of abduction at $0^{\circ}$, $30^{\circ}$ and weight of 2 kg showed the highest SA activity. However, there was no significant difference between PM and UT (p>.05). There was a significant difference between PM/SA and UT/SA in ratio of muscle activity according to angle (p<.05). Significant differences were found at PM/SA angles of $30^{\circ}$, $60^{\circ}$ and $90^{\circ}$ (p<.05). For UT/SA, significant difference was only observed at $90^{\circ}$ (p<.05). Conclusion: Based on the results of this study, in order to strengthen the SA, it was found to be most effective to use 1 and 1.5 kg weights with abduction angles of $0^{\circ}$ and $30^{\circ}$ at shoulder protraction in supine position.

Geological Structure of Precambrian to Paleozoic metasedimentary rocks in the Janggunbng area, Korea -Crustal evolution and environmental geology of the central part of the North Sobaegsan Massif, Korea- (장군봉지역 선캠브리아대-고생대 변성퇴적암류의 지질구조 -북부 소백산육괴의 중앙부지역의 지각진화와 환경지질)

  • Gang, Ji Hun;Kim, Hyeong Sik;O, Se Bong
    • The Journal of the Petrological Society of Korea
    • /
    • v.6 no.3
    • /
    • pp.244-244
    • /
    • 1997
  • The Janggunbong area(this study area) at the central-south part in the North Sobaegsan Massif, Korea, consists mainly of Precambrian(Wonnam and Yulri Formations)-Paleozoic [Joseon Supergroup(Jangsan Quarzite, Dueumri Formation and Janggum Limestone) and Pyeongan Group(Jaesan and Dongsugok Formations)] metasedimentary rocks and Mesozoic granitoid(Chunyang granite.) This study is to interpret geological structure of the North Sobaegsan Massif in the Jang-gunbong area by analysing rock-structure and microstructure of the constituent rocks. It indicates that its geological structure was formed at least by four phases of deformation after the formation of gneissosity(S0) in the Wonnam Formation and bedding plane(S0) in the Paleozoic metasedimentary rocks. The first phase deformation(D1) formed tight isoclinal fold(F1). Its axial plane(S1) strikes east-west and steeply dips north. Its axis (L1) subhorizontally plunges east-west. The second phase deformation(D2), which was related to ductile shear deformation, formed stretching lineation(L2) and shear foliation(S2). The sense of the shear movement indicates dextral strike-slip shearing(top-to-the east shearing). The third phase deformation(D3) formed open inclined fold(F3). Its axial plane(S3) strikes east-west and moderately or gently dips north. Its axis(L3) subhorizontally plunges east-west. The F3 fold reoriented the original north-dipping S1 foliation and D2 shear sense into south-dipping S1 foliation(top-to-the west shear sense on this foliation) at its a limb. The four phase of deformation(D4) formed asymmetric-type open inclined fold(F4) of NE-vergence with NW striking axial plane(S4) and NW-NNW plunging axis(L4). The F4 fold partly reoriented pre-D4 structural elements with east-west trend into those with north-south trend. Such reorientation is recognized mainly in the Paleozoic metasedimentary rocks.

Geological Structure of Precambrian to Paleozoic metasedimentary rocks in the Janggunbong area, Korea-Crustal evolution and environmental geology of the central part of the North Sobaegsan massif, Korea- (장군봉지역 선캠브리아대-고생대 변성퇴적암류의 지질구조-북부 소백산육괴의 중앙부지역의 지각진화와 환경지질)

  • 강지훈;김형식;오세봉
    • The Journal of the Petrological Society of Korea
    • /
    • v.6 no.3
    • /
    • pp.224-259
    • /
    • 1997
  • The Janggunbong area(this study area) at the central-south part in the North Sobaegsan Massif, Korea, consists mainly of Precambrian(Wonnam and Yulri Formations)-Paleozoic [Joseon Supergroupuangsan Quarzite, Dueumri Formation and Janggun Limestone) and Pyeongan Group (Jaesan and Dongsugok Formations)l metasedimentary rocks and Mesozoic granitoid(Chunyang granite). This study is to interpret geological structure of the North Sobaegsan Massif in the Janggunbong area by analysing rock-structure and microstructure of the constituent rocks. It indicates that its geological structure was formed at least by four phases of deformation after the formation of gneissosity(S0) in the Wonnam Formation and bedding plane(S0) in the Paleozoic metasedimentary rocks. The first phase deformation(D1) formed tight isoclinal fold(F1). Its axial plane(S1) strikes east-west and steeply dips north. Its axis(L1) subhorizontally plunges east-west. The second phase deformation(D2), which was related to ductile shear deformation, formed stretching lineation(L2) and shear foliation(S2). The sense of the shear movement indicates dextral strike-slip shearing(topto-the east shearing). The third phase deformation(D3) formed open inclined fold(F3). Its axial plane(S3) strikes east-west and moderately or gently dips north. Its axis(L3) subhorizontally plunges east-west. The F3 fold reoriented the original north-dipping S1 foliation and D2 shear sense into south-dipping S1 foliation(top-to-the west shear sense on this foliation) at its a limb. The four phase of deformation(D4) formed asymmetric-type open inclined fold(F4) of NE-vergence with NW striking axial plane(%) and NW-NNW plunging axis(L4). The F4 fold partly reoriented pre-D4 structural elements with east-west trend into those with north-south trend. Such reorientaion is recognized mainly in the Paleozoic metasedimentary rocks.

  • PDF