• Title/Summary/Keyword: 날개끝 유동

Search Result 41, Processing Time 0.019 seconds

Study on the Three Dimensional Flow Characteristics of the Propeller Wake Using PIV Techniques (PIV 기법을 이용한 프로펠러 후류의 3차원 유동 특성 연구)

  • Paik, Bu-Geun;Kim, Jin;Kim, Kyung-Youl;Kim, Ki-Sup
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.44 no.3 s.153
    • /
    • pp.219-227
    • /
    • 2007
  • A stereo-PIV (particle image velocimetry) technique is used to investigate the vortical structure of the wake behind a rotating propeller in the present study. A four bladed propeller is tested in a cavitaion tunnel without any wake screen. Hundreds of instantaneous velocity fields are phase-averaged to reveal the three dimensional spatial evolution of the flow behind the propeller. The results of conventional 2-D PIV are also compared with those of the stereo-PIV to understand the vortical structure of propeller wake deeply. The variations of radial and axial velocities in the 2-D PIV results seem to be affected by the out-of-plane motion. generating a little perspective error in the in-plane velocity components of the slipstream. The strong out-of-plane motion around the hub vortex also causes the perspective error to vary the axial velocity component a little at the near wake region. The out-of-plane velocity component had the maximum value of about 0.3U0 in the tip vortices and continued its magnitude in the wake region.

PIV Analysis of Free Surface Effects on Flow Around a Rotating Propeller with Varying Water Depth (자유표면과 수심깊이가 회전하는 프로펠러 주위 유동에 미치는 영향에 대한 PIV 해석)

  • Paik, Bu-Geun;Lee, Jung-Yeop;Lee, Sang-Joon
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.42 no.5 s.143
    • /
    • pp.427-434
    • /
    • 2005
  • The free surface influenced the wake behind a rotating propeller and its effects were investigated experimentally in a circulating water channel with the variation of water depth. Instantaneous velocity fields were measured using two-frame PIV technique and ensemble-averaged to study the phase-averaged flow structure in the wake region. For an isolated propeller, the flow behind the propeller is affected only by the propeller rotation speed, the leading on the blades and the proximity of the propeller to the free surface. The phase-averaged mean velocity fields show that the potential wake and the viscous wake developed on the blade surfaces. The interaction between the tip vortices and the slipstream causes the oscillating trajectory of tip vortices. The presence of the free surface greatly affected the wake structure, especially for propeller immersion depth of 0.6D. At small immersion depths, the free surface modified the tip and trailing vortices and the slipstream flow structure downstream of X/D = 0.3 in the propeller wake.

Numerical Analysis of Tip Vortex and Cavitation of Elliptic Hydrofoil with NACA 662-415 Cross Section (NACA 662-415 단면을 가지는 타원형 수중익의 날개 끝 보오텍스 및 캐비테이션 수치해석)

  • Park, Il-Ryong;Kim, Je-in;Seol, Han-Sin;Kim, Ki-Sup;Ahn, Jong-Woo
    • Journal of Ocean Engineering and Technology
    • /
    • v.32 no.4
    • /
    • pp.244-252
    • /
    • 2018
  • This paper provides quantification of the effects of the turbulence model and grid refinement on the analysis of tip vortex flows by using the RANS(Reynolds averaged Navier-Stokes) method. Numerical simulations of the tip vortex flows of the NACA $66_2$-415 elliptic hydrofoil were conducted, and two turbulence models for RANS closure were tested, i.e., the Realizable $k-{\varepsilon}$ model and the Reynolds stress transport model. Numerical results were compared with available experimental data, and it was shown that the data for the Reynolds stress transport model that were computed on the finest grid system had better agreement in reproducing the development and propagation of the tip vortex. The Realizable $k-{\varepsilon}$ model overestimated the turbulence level in the vortex core and showed a diffusive behavior of the tip vortex. The tip vortex cavitation on the hydrofoil and its trajectory also showed good agreement between the current numerical results that were obtained using the Reynolds stress transport model and the results observed in the experiment.

The Aerodynamic Origin of Abrupt Thrust Generation in Insect Flight (Part 1: Vortex Staying and Vortex Pairing Phenomena) (곤충비행에서 갑작스런 추력발생의 공기역학적 원인 Part 1: 와류 정지 및 와류 짝 현상)

  • Lee, Jung-Sang;Kim, Jin-Ho;Kim, Chong-Am
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.35 no.1
    • /
    • pp.1-9
    • /
    • 2007
  • Numerical simulation is conducted to investigate aerodynamic force generation mechanism for the "figure-of-eight" motion of Dipteran fly, Phormia-Regina. Wing trajectory is referred to experimental result, which was observed from the tethered flight under freestream condition. Numerical simulation shows that the lift is mainly generated during downstroke motion and the large amount of thrust is generated abruptly at the end of upstroke motion. In the present work, vortical structure in the wake and the pressure field around the airfoil are examined to understand the generation of lift and thrust. Consequently, the lift generation is related with the leading edge vortex which is developed by an effective angle of attack. And the thrust generation can be explained by vortex pairing in the flow field and by vortex staying in the pressure field.

Geometry Realization of an Airplane and Numerical Flow Visualization (역설계에 의한 비행기의 형상 구현과 수치계산에 의한 유동 가시화)

  • Kim, Yang-Kyun;Kim, Sung-Cho;Kim, Jeong-Soo;Choi, Jong-Wook;Park, Jeong
    • Journal of the Korean Society of Visualization
    • /
    • v.5 no.2
    • /
    • pp.20-25
    • /
    • 2007
  • The geometry of a commercial passenger airplane is realized based on a Boeing 747-400 model through the photographic scanning and reverse engineering. The each element consisting of the plane such as fuselage, wing, vertical fin, stabilizer and engines, is individually generated and then the whole body is assembled by the photomodeler. The maximum error in the realized airplane is about 1.4% comparing with the real one. The three-dimensional inviscid steady compressible governing equations are solved in the unstructured tetrahedron grid system, and in a finite volume method using STAR-CD when the airplane flies at the cruise condition. The pressure distribution on the surface and the wing-tip vortices are visualized, and in addition to the aerodynamics coefficients, lift and drag are estimated.

Two Visualization Techniques Using Smoke-wire and Micro Water-droplets and Their Applications to Vortex Flows (연기선과 미세 수적을 이용한 두 가지 가시화 기법과 와류에의 적용)

  • Sohn, Myong Hwan
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.44 no.12
    • /
    • pp.1017-1026
    • /
    • 2016
  • The present paper describes the two off-surface visualization techniques and their application examples to vortex flows. One of the two visualization techniques is the classical smoke-wire technique, and the other is the visualization technique using the micro water-droplets generated by the home-style ultrasonic humidifier. The smoke-wire technique has the limit of air flow speed (about 5 m/sec for 0.07 mm-diameter wire) and the pollution problem, but it produces very fine and clear streak line sheet. It is applied to visualize the wing-tip vortices of a 3-dimensional wing. The micro water-droplet technique has the larger limit of air flow speed (above 10 m/sec) and is free from pollution and toxic problems compared to the smoke-wire technique. It is successfully applied to visualize the complex vortex system of a double-delta wing with an apex strake.

Numerical Investigation of the Effect of Spacing in Coaxial Propeller Multi-Copter in Hovering (멀티콥터용 동축반전 프로펠러 상하 간격에 따른 제자리 비행 공력 특성에 대한 수치적 연구)

  • Sim, Min-Cheol;Lee, Kyung-Tae;Kim, Hae-Dong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.48 no.2
    • /
    • pp.89-97
    • /
    • 2020
  • In this study, a numerical analysis was performed on 26 inch single and coaxial propeller using the ANSYS Fluent 19.0 Solver to analyse the effect of the distance between coaxial propellers as one of the design parameter. The Moving Reference Frame (MRF) method was used for single propeller, while the sliding mesh method was used for a coaxial propeller to analyse the flow field varying with azimuth angle. The thrust and power are decreased as the upper and lower propeller approaching each other. As H/D is increased, interference between the propellers is decreased. According to the flow field variable contour of the coaxial propeller, it appears that the change in aerodynamic performance is due to the loading effect and the tip vortex wake effect.

PIV Aanalysis of Vortical Flow behind a Rotating Propeller in a Cavitation Tunnel (캐비테이션 터널에서 PIV를 이용한 프로펠러 후류 보오텍스 유동계측 및 거동해석)

  • Paik, Bu-Geun;Kim, Jin;Park, Young-Ha;Kim, Ki-Sup;Kim, Kyoung-Youl
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.42 no.6 s.144
    • /
    • pp.619-630
    • /
    • 2005
  • A two-frame PIV (Particle Image Velocimetry) technique is used to investigate the wake characteristics behind a marine propeller with 4 blades at high Reynolds number. For each of 9 different blade phases from $ 0^{\circ} $ to $ 80^{\circ} $, one hundred and fifty instantaneous velocity fields are measured. They are ensemble averaged to study the spatial evolution of the propeller wake in the region ranging from the trailing edge to one propeller diameter (D) downstream location. The phase-averaged mean velocity shows that the trailing vorticity is related to radial velocity jump, and the viscous wake is affected by boundary layers developed on the blade surfaces and centrifugal force. Both Galilean decomposition method and vortex identification method using swirling strength calculation are very useful for the study of vortex behaviors En the propeller wake legion. The slipstream contraction occurs in the near-wake region up to about X/D : 0.53 downstream. Thereafter, unstable oscillation occurs because of the reduction of interaction between the tip vortex and the wake sheet behind the maximum contraction point.

Numerical Analysis of Non-Cavitating and Cavitating Performance of a SVA Potsdam Propeller (SVA Potsdam 프로펠러 단독 및 캐비테이션 성능 수치해석)

  • Kim, Je-In;Park, Il-Ryong;Kim, Ki-Sup;Ahn, Jong-Woo
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.54 no.3
    • /
    • pp.215-226
    • /
    • 2017
  • This paper presents numerical results of the performance of a marin propeller in cavitating and non-cavitating flow conditions. The geometry and experimental validation data of the propeller are provided in Potsdam Propeller Test Case(PPTC) in the framework of the second International Symposium on Marine Propulsors 2011(SMP'11) workshop. The PPTC includes open water tests, velocity field measurements and cavitation tests. The present numerical analysis was carried out by using the Reynolds averaged Navier-Stokes(RANS) method on a wall-resolved grid ensuring a y+=1, where the SST k-${\omega}$ model was mainly used for turbulence closure. The influence of the turbulence model was investigated in the prediction of the wake field under a non-cavitating flow condition. The propeller tip vortex flows in both cavitating and non-cavitating conditions were captured through adaptation of additional grids. For the cavitation flows at three operation points, Schnerr-Sauer's cavitation model was used with a Volume-Of Fluid(VOF) approach to capture the two-phase flows. The present numerical results for the propeller wake and cavitation predictions including the open water performance showed a qualitatively reasonable agreement with the model test results.

Scaleup of Electrolytic Reactors in Pyroprocessing (Pyroprocessing 공정에 사용되는 전해반응장치의 규모 확대)

  • Yoo, Jae-Hyung;Kim, Jeong-Guk;Lee, Han-Soo
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.7 no.4
    • /
    • pp.237-242
    • /
    • 2009
  • In the pyroprocessing of spent nuclear fuels, fuel materials are recovered by electrochemical reactions on the surface of electrodes as well as stirring the electrolyte in electrolytic cells such as electrorefiner, electroreducer and electrowinner. The system with this equipment should first be scaled-up in order to commercialize the pyroprocessing. So in this study, the scale-up for those electrolytic cells was studied to design a large-scale system which can be employed in a commercial process in the future. Basically the dimensions of both electrolytic cells and electrodes should be enlarged on the basis of the geometrical similarity. Then the criterion of constant power input per unit volume, characterizing the fluid behavior in the cells, was introduced in this study and a calculation process based on trial-and-error methode was derived, which makes it possible to seek a proper speed of agitation in the electrolytic cells. Consequently examples of scale-up for an arbitrary small scale system were shown when the criterion of constant power input per unit volume and another criterion of constant impeller tip speed were respectively applied.

  • PDF