DOI QR코드

DOI QR Code

The Aerodynamic Origin of Abrupt Thrust Generation in Insect Flight (Part 1: Vortex Staying and Vortex Pairing Phenomena)

곤충비행에서 갑작스런 추력발생의 공기역학적 원인 Part 1: 와류 정지 및 와류 짝 현상

  • 이정상 (서울대학교 기계항공공학부 대학원) ;
  • 김진호 (서울대학교 기계항공공학부 대학원) ;
  • 김종암 (서울대학교 기계항공공학부)
  • Published : 2007.01.31

Abstract

Numerical simulation is conducted to investigate aerodynamic force generation mechanism for the "figure-of-eight" motion of Dipteran fly, Phormia-Regina. Wing trajectory is referred to experimental result, which was observed from the tethered flight under freestream condition. Numerical simulation shows that the lift is mainly generated during downstroke motion and the large amount of thrust is generated abruptly at the end of upstroke motion. In the present work, vortical structure in the wake and the pressure field around the airfoil are examined to understand the generation of lift and thrust. Consequently, the lift generation is related with the leading edge vortex which is developed by an effective angle of attack. And the thrust generation can be explained by vortex pairing in the flow field and by vortex staying in the pressure field.

검정금파리 날개의 “8자 운동”에 의한 공기역학적 힘의 발생에 관해 수치해석을 수행하였다. 날개운동은 자유류가 있는 tethered flight 실험에서 관찰된 결과에서 인용하였다. 해석결과 양력은 downstroke 중일 때 주로 발생하였고 추력은 upstroke 끝에서 갑작스럽게 발생하였다. 본 연구에서는 양력과 추력 발생의 이러한 특성을 후류에서의 와류구조와 에어포일 주위의 압력장을 통해 물리적으로 이해하고자 하였다. 결과적으로 양력발생은 유효받음각의 증가에 따른 앞전와류와 관계있었으며, 추력발생은 유동장 형태의 측면에서 와류 짝(vortex pairing)현상과 압력장 측면에서 와류정지 현상으로 설명할 수 있었다.

Keywords

References

  1. Brodsky, A. K, 'The Evolution of Insect Flight', Oxford Univ. Press, 1994
  2. Dickinson, M. H., 'Come Fly with Me', ENG. & SCI., No.3, 2003, pp. 10-19
  3. Dickinson, M. H., 'Solving the Mystery of Insect Flight', Scientific American, Vol. 284(6), 2001, pp. 48-57 https://doi.org/10.1038/scientificamerican0601-48
  4. Sane, S. P., 'The Aerodynamics of Insect Flight', J. Exp. Biol. Vol. 206, 2003, pp. 4191-4207 https://doi.org/10.1242/jeb.00663
  5. Alexander, R. M., 'Smokescreen Lifted on Insect Flight' NATURE, Vol. 384, 1996, pp. 609 https://doi.org/10.1038/384609a0
  6. Wang, Z. J., 'Two Dimensional Mechanism for Insect Hovering', Phy. Rev. lett., Vol. 85, 2000. pp. 2216-2219 https://doi.org/10.1103/PhysRevLett.85.2216
  7. Willmott, A. P., Ellington, C. P., and Thomas, A. R, 'Flow Visualization and Unsteady Aerodynamics in the Flight of the Hawkmoth, Manduca Sexa', Phil. Trans. R. Soc. Land. B, Vol. 352, 1997, pp. 303-316 https://doi.org/10.1098/rstb.1997.0022
  8. Lehmalm, F., 'The Mechanism of Lift Enhancement in the Insect Flight', Naturwissenssenschaften, Vol. 91, 2004, pp. 101-122 https://doi.org/10.1007/s00114-003-0490-8
  9. Ennos, R, 'Unconventional Aerodynamics', NATURE, Vol. 344, 1990, pp. 491 https://doi.org/10.1038/344491a0
  10. Ward-smith. A. J., 'Biophysical Aerodynamics and the Natural Environment', John Willy & Sons, 1984
  11. Ellington, C. P., Berg, C. van dan, Willmott, A. P., and Thomas, A. L. R, 'Leading-edge Vortices in Insect Flight', NATURE, Vol. 384, 1996, pp. 626-630 https://doi.org/10.1038/384626a0
  12. Dickinson, M. H., Lehmann, F., and Sane, S. P., 'Wing Rotation and the Aerodynamic Basis of Insect Flight', SCIENCE, Vol. 284, 1999, pp. 1954-1960 https://doi.org/10.1126/science.284.5422.1954
  13. Birch, J. M., and Dickinson, M. H., 'Spanwise Flow and the Attachment of the Leading -edge Vortex on Insect Wings', NATURE, Vol. 412, 2001, pp. 729-733 https://doi.org/10.1038/35089071
  14. Liu, H., and Kawachi, K., 'A Numerical Study of Insect Flight', J. Comp. Phy., Vol. 146, 1998, pp. 124-156 https://doi.org/10.1006/jcph.1998.6019
  15. Nachtigall, W., 'Insects in Flight', McGraw-Hill, 1974
  16. Kim, C., 'Sensitivity Analysis for the Navier-Stokes Equations with Two-Equation Turbulence Models and Its Applications', PH. D. Dissertation, Dept. of Aerospace Eng., Seoul Nan Univ., Seoul, Korea, Feb. 2001
  17. Lee, J. S., Kim C., and Kim K. H, ' Design of Flapping Airfoil for Optimal Aerodynamic Performance in Low-Reynolds Number Flows', AIAA Journal, Vol. 44, No.9, 2006, pp. 1960-1972 https://doi.org/10.2514/1.15981
  18. Anderson, J. M., Streitlien, K., Barrett, D. S., and Triantafyllou, M. S., 'Oscillating FoiIs of High Propulsive Efficiency', J. Fluid Mech., Vol. 360, 1998, pp. 41-72 https://doi.org/10.1017/S0022112097008197
  19. Koochesfahani, M. M., 'Vortical Patterns in the Wake of an Oscillating Airfoil', AIAA Journal, Vol. 27, No.9, 1989, pp. 1200-1205 https://doi.org/10.2514/3.10246
  20. Wang, Z. J., Birch, J. M., and Dickinson, M. H, 'Unsteady Force and Flows in Low Renolds Number Hovering Flight: Two-Dimensional Computation vs Robotic Wing Experiments', J. Exp. Biol. Vol. 207, 2004, pp. 449-460 https://doi.org/10.1242/jeb.00739
  21. Sun, M., and Lan, S. L., 'A Computation Study of the Aerodynamic Forces and Power Requirements of Dragonfly(Aeshna Juncea) Hovering', J. Exp. Biol. Vol. 207, 2004, pp. 1887-1901 https://doi.org/10.1242/jeb.00776
  22. Lugt, H. J., 'Vortex Flow in Nature and Technology', John Wiley & Sons, 1983
  23. 이정상, 김종암, 노오현, '저 레이놀즈수 유동에서Flapping-Airfoil의 수치적 공력특성 연구', 한국항공우주학회지, 제30권, 제4호, 2002, pp. 44-52
  24. Lee, J. S., 'Numerical Study on Flapping-Airfoil Design and Unsteady Mechanism of Two-Dimensional Insect Wing', PH. D. Dissertation, Dept. of Aerospace Eng., Seoul Nat'l Univ., Seoul, Korea, Aug. 2006