• Title/Summary/Keyword: 난방 시스템

Search Result 683, Processing Time 0.023 seconds

태양열 급탕 및 난방시스템 설치사례

  • Lee, Jin-Guk;Jo, Seong-Gu
    • The Magazine of the Society of Air-Conditioning and Refrigerating Engineers of Korea
    • /
    • v.40 no.5
    • /
    • pp.11-17
    • /
    • 2011
  • 태양열을 이용한 온수급탕 및 난방시스템의 개요와 설치사례에 대하여 소개하고자 한다.

  • PDF

Energy Saving Effect for High Bed Strawberry Using a Crown Heating System (고설 딸기 관부 난방시스템의 에너지 절감 효과)

  • Moon, Jong Pil;Park, Seok Ho;Kwon, Jin Kyung;Kang, Youn Koo;Lee, Jae Han;Kim, Hyung Gweon
    • Journal of Bio-Environment Control
    • /
    • v.28 no.4
    • /
    • pp.420-428
    • /
    • 2019
  • This study is the heating energy saving test of the high-bed strawberry crown heating system. The system consists of electric hot water boiler, thermal storage tank, circulation pump, crown heating pipe(white low density polyethylene, diameter 16mm) and a temperature control panel. For crown heating, the hot water pipe was installed as close as possible to the crown part after planting the seedlings and the pipe position was fixed with a horticultural fixing pin. In the local heating type, hot water at $20{\sim}23^{\circ}C$ is stored in the themal tank by using an electric hot water boiler, and crown spot is partially heated at the setting temperature of $13{\sim}15^{\circ}C$ by turning on/off the circulation pump using a temperature sensor for controlling the hot water circulation pump which was installed at the very close to crown of strawberry. The treatment of test zone consisted of space heating $4^{\circ}C$ + crown heating(treatment 1), space heating $8^{\circ}C$(control), space heating $6^{\circ}C$ + crown heating(treatment 2). And strawberries were planted in the number of 980 for each treatment. The heating energy consumption was compared between November 8, 2017 and March 30, 2018. Accumulated power consumption is converted to integrated kerosene consumption. The converted kerosene consumption is 1,320L(100%) for space $8^{\circ}C$ heating, 928L(70.3%) for space $4^{\circ}C$ + crown heating, 1,161L($88^{\circ}C$) for space $6^{\circ}C$ + crown heating). It was analyzed that space $4^{\circ}C$ + pipe heating and space $6^{\circ}C$ + crown heating save heating energy of 29.7% and 12% respectively compared to $8^{\circ}C$ space heating(control).

Effect of Growing Part Following Local Heating for Cherry Tomato on Temperature Distribution of Crop and Fuel Consumption (방울토마토 생장부 추종 국소난방이 군락 온도분포 및 연료소비에 미치는 영향)

  • Kwon, Jin Kyung;Kang, Geum Chun;Moon, Jong Pil;Lee, Tae Seok;Lee, Su Jang
    • Journal of Bio-Environment Control
    • /
    • v.24 no.3
    • /
    • pp.217-225
    • /
    • 2015
  • Local heating system providing hot air locally to growing parts including shoot apex and flower cluster which were temperature-sensitive organs of cherry tomato was developed to reduce energy consumption for greenhouse heating without decline of crop growth. Growing part following local heating system was composed of double duct distributer which connected inner and outer ducts with hot air heater and winder which moved ducts up and down following growing parts with plant growth. Growing part local heating system was compared with conventional bottom duct heating system with respect to distributions of air and leaf surface temperatures according to height, growth characteristics and energy consumption. By growing part local heating, air temperature around growing part was maintained $0.9{\sim}2.0^{\circ}C$ higher than that of lower part of crop and leaf surface temperature was also stratified according to height. Investigations on crop growth characteristics and crop yield showed no statistically significant difference except for plant height between bottom duct heating and growing part local heating. As a result, the growing part local heating system consumed 23.7% less heating energy than the bottom duct heating system without decrease of crop yield.

Analysis of Heating Effect of an Infrared Heating System in a Small Venlo-type Glasshouse (소형 벤로형 유리온실에서 적외선등 난방 시스템의 난방효과 분석)

  • Lim, Mi Young;Ko, Chung Ho;Lee, Sang Bok;Kim, Hyo Kyeong;Bae, Yong Han;Kim, Young Bok;Yoon, Yong Cheol;Jeong, Byoung Ryong
    • FLOWER RESEARCH JOURNAL
    • /
    • v.18 no.3
    • /
    • pp.186-192
    • /
    • 2010
  • An infrared heating system, installed in a small venlo-type glasshouse ($280m^2$) in Gyeongsang National University, Jinju, Korea, was used to investigate its heating effect with potted Phalaenopsis, Schefflera arboricola 'Hongkong', Ficus elastica 'Variegata', and Rosa hybrida 'Yellow King' as the test plants. Temperature changes in test plants with the system turned 'On' and 'Off' were measured by using an infrared camera and the consumption of electricity by this infrared heating system was measured and analyzed. In potted Phalaenopsis, when the set air temperature of the greenhouse was $18^{\circ}C$, temperature of leaves and the growing medium were $22.8{\sim}27^{\circ}C$ and $21.3{\sim}24.3^{\circ}C$, respectively. In such tall plants as Schefflera arboricola 'Hongkong' and Ficus elastica 'Variegata', the upper part showed the highest temperature of 24.0 and $26.9^{\circ}C$, respectively. From the results of temperature change measurements, the plant temperatures were near or above the set point temperatures with some fluctuations depending on the position or distance from the infrared heating system. When air temperature between night and dawn dropped sharply, plant temperatures were maintained close to the set temperature ($18^{\circ}C$). There was a significant difference between 'On' and 'Off' states of the infrared heating system in average temperatures of root zone and leaf: 21.8 and $17.8^{\circ}C$ with the system 'On' and 20.4 and $15.5^{\circ}C$ with the system 'Off', respectively, in a cut rose Rosa hybrida 'Yellow King'. The heating load was about $24,850{\sim}35,830kcal{\cdot}h^{-1}$, which comes to about 27,000~40,000 won in Korean currency when calculated in terms of the cost of heating by a hot water heating system heated by petroleum. The cost for heating by the infrared heating system was about 35% of that of a hot water heating system. With the infrared heating system, the air temperature during the night was maintained slightly lower than the set point air temperature, probably due to the lack of air tightness of the glasshouse. Therefore, glasshouses with an infrared heating system requires further investigation including the installation space of the heat-emitting units, temperature sensor positions, and convection.

Study on Energy Performance And Economic Evaluation of Windows System with Built-in Type Blinds (블라인드 내장형 창호시스템의 에너지 성능 및 경제성 평가에 관한 연구)

  • Joe, Won-Hwa;Lim, Nam-Gi
    • Journal of the Korea Institute of Building Construction
    • /
    • v.10 no.2
    • /
    • pp.97-104
    • /
    • 2010
  • This study evaluated the energy efficiency of a windows system using built-in blinds, with regard to their insulation performance and their blocking of solar radiation. The study took advantage of the "Physibel Voltra" program as a physical simulation of heat transfer. To simulate the "Physibel Voltra" program, I practiced a mock-up test to determine heating quality and translation condition. I analyzed the propensity to annual energy consumption, the annual quantity of heat transfer, and the annual cooling and heating cost through a computer simulation for one general household in an apartment building. In the test, it was found that compared to a general windows system, a windows system with built-in blinds reduced the annual heat transfer by 10% in cooling states and by 11% in heating states when the blind was up. When the blind was down, the windows system with built-in blinds reduced the annual heat transfer by 25% in cooling states and 30% in heating states. When a windows system with built-in blinds is compared with a general windows system, the quantity of cooling and heating loads is reduced by 283.3kw in cooling states and 76.3kw in heating states. This leads to a reduction in the required cooling and heating energy of 359.6kw per house. It is thus judged that the use of a windows system with built-in blinds is advantageous in terms of reducing greenhouse gas emissions, because the annual TOE (tons of oil equivalent) per house is reduced by 0.078TOE, while $tCO_2$ is reduced by $0.16tCO_2$. In addition, compared with a general windows system, the cost of cooling and heating loads in the system reduces the annual cooling cost by 100,000won, and the annual heating cost by 50,000won. Ultimately, this means that cooling and heating loads are cut by 150,000won per year.

The Energy Analysis and Control Characteristics of a Hot Water Heating System for Apartment Houses (공동주택용 온수난방 시스템의 에너지해석 및 제어특성)

  • 장효환;안병천
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.8 no.1
    • /
    • pp.76-87
    • /
    • 1996
  • Energy analysis for the hot water heating control system of apartment house complex is accomplished by computer simulation. Mathematical model of a boiler, pipe network and a unit-house is developed. The effects of heating control methods on the heating performance and energy consumption of the system are investigated. The heating control methods considered in this study are a continuous heating control, and on-off heating control and an intermittent heating control methods. For each control method, the effects of an outdoor temperature, indoor temperature sensing position and the capacities of the boilers and circulating pumps on the heating performance and energy consumption are obtained and "the best" control method is recommended.commended.

  • PDF

A Wireless Sensor Network Based a Boiler Remote Control System (센서 네트웍 기반의 보일러 원격제어 시스템)

  • Jung, Kyu-Cheol;Lee, Chang-Bok;Park, Sang-Jun;Lee, Jong-Chan;Park, Ki-Hong
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2009.01a
    • /
    • pp.259-262
    • /
    • 2009
  • 본 연구에서는 지그비 기반의 컴퓨팅 기술이 혼합된, 난방 보일러 제어시스템을 제안한다. 지그비 RF 기술과 임베디드 하드웨어 기술의 조합을 통하여, 주택 및 아파트 등에서 각 방별로 온도 및 습도를 취합하여 난방을 관리할 수 있다. 또한 제안된 시스템은 체감온도 기반으로 난방을 관리하여 인간에게 쾌적한 환경을 제공하기 위한 최적의 선택이라 할 수 있다.

  • PDF

The Design and Implementation of Heating Control System Based on Sensor Networks (센서 네트워크 기반의 난방제어시스템 설계 및 구현)

  • Lee, Jin-Kwan;Lee, Dae-Hyung;Lee, Chang-Bok;Lee, Jong-Chan;Park, Ki-Hong
    • Convergence Security Journal
    • /
    • v.8 no.1
    • /
    • pp.27-33
    • /
    • 2008
  • The object of this paper is to design a heating control system based on sensor networks for the house, integrated with computing technology. The proposed system can manage the heating by sensing and analyzing the temperature and humidity in apartment house and others. This system also is capable of giving a comfortable circumstances because the interior of a house is in heated by the sensory temperature based control system.

  • PDF

Development of Simulation Model for Greenhouse Heating System Using Latent Heat Storage System (잠열축열을 이용한 그린하우스 난방시스템의 시뮬레이션 모델개발)

  • 노정근;송현갑
    • Proceedings of the Korean Society for Bio-Environment Control Conference
    • /
    • 2001.04b
    • /
    • pp.31-33
    • /
    • 2001
  • 잠열축열 그린하우스 난방 시스템의 난방특성을 분석하기 위하여 이에 대한 열평형 이론을 정립하고 수치해석에 의하여 컴퓨터 시뮬레이션 모델을 개발하고자 잠열축열 그린하우스 난방 시스템의 열저항 회로망을 구성하였다. 그리고 그린하우스의 피복재, 내부 공기, 토양표면, 잠열 축열재와의 열평형 방정식을 구성하였으며, Newton-Raphson반복법을 이용하여 수치해석을 하였고, 실험 분석을 통하여 수치해의 타당성을 검증하였다. 시뮬레이션 모델을 위하여 C언어를 사용하였으며, 겨울철 (11월-2월)의 기후 조건이 유사한 여러 날을 선정하여 온도, 태양강도, 상대습도, 토양 수분함량 등을 자료로 하여 모델링을 하였다. 여기에 사용된 토양 조건은 사양토로 건조한 상태를 유지하였다. 이상과 같은 분석에 의하여 그린하우스내 경시적 공기온도 변화와 열전달 현상의 실험치와 이론분석 결과가 잘 일치하고 있음을 알 수 있었다.

  • PDF

A Study on the Horizontal Ground Source Beat Pump Greenhouse Heating System with Thermal Storage Tank (축열조를 채용한 수평형 지열원 히트펌프 온실 난방 시스템에 관한 연구)

  • Park, Yong-Jung;Kim, Kyoung-Hoon
    • Journal of Energy Engineering
    • /
    • v.15 no.3 s.47
    • /
    • pp.194-201
    • /
    • 2006
  • Greenhouses should be heated during nights and cold days in order to fit growth conditions in greenhouses. Ground source heat pump (GSHP) systems are recognized to be outstanding heating and cooling systems. A horizontal GSHP system with thermal storage tank was installed in greenhouse and investigated the performance characteristics. The reasons for using thermal storage tank were discussed in detail. Thermal storage tank can provide heat for heating load that is larger than GSHP system heating capacity. The results of study showed that the heating coefficient of performance of the heat pump system was 2.69.