• Title/Summary/Keyword: 난류특성

Search Result 1,203, Processing Time 0.026 seconds

Numerical Analysis on the Compressible Flow Characteristics of Supersonic Jet Caused by High-Pressure Pipe Rupture Using CFD (CFD를 이용한 고압파이프 파단 시 초음속제트의 압축성유동 특성에 관한 수치해석)

  • Jung, Jong-Kil;Kim, Kwang-Chu;Yoon, Jun-Kyu
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.41 no.10
    • /
    • pp.649-657
    • /
    • 2017
  • A rupture in a high-pressure pipe causes the fluid in the pipe to be discharged in the atmosphere at a high speed resulting in a supersonic jet that generates the compressible flow. This supersonic jet may display complicated and unsteady behavior in general. In this study, Computational Fluid Dynamics (CFD) analysis was performed to investigate the compressible flow generated by a supersonic jet ejected from a high-pressure pipe. A Shear Stress Transport (SST) turbulence model was selected to analyze the unsteady nature of the flow, which depends upon the various gases as well as the diameter of the pipe. In the CFD analysis, the basic boundary conditions were assumed to be as follows: pipe of diameter 10 cm, jet pressure ratio of 5, and an inlet gas temperature of 300 K. During the analysis, the behavior of the shockwave generated by a supersonic jet was observed and it was found that the blast wave was generated indirectly. The pressure wave characteristics of hydrogen gas, which possesses the smallest molecular mass, showed the shortest distance to the safety zone. There were no significant difference observed for nitrogen gas, air, and oxygen gas, which have similar molecular mass. In addition, an increase in the diameter of the pipe resulted in the ejected impact caused by the increased flow rate to become larger and the zone of jet influence to extend further.

Spatio-temporal Distributions of Phytoplankton Community in the Coastal Waters of Central South Sea (CWoCSS), Korea (남해 중앙부 연안해역 식물플랑크톤 군집의 시·공간적 분포특성)

  • Yoon, Yang Ho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.1
    • /
    • pp.441-453
    • /
    • 2017
  • This paper described the spatio-temporal distributions in the phytoplankton community, such as species composition, standing crops, and dominant species, from July 2012 to April 2013 in the Coastal Waters of Central South Sea (CWoCSS) of Korea. A total of 87 species of phytoplankton belonging to 52 genera were identified. In particular, diatoms and phytoflagellates comprised more than 62.1% and 37.9% of the total species, respectively. The phytoplankton cell density fluctuated with an annual mean of $7.9{\times}10^4cells{\cdot}L^{-1}$ between the lowest value of $1.0{\times}10^3cells{\cdot}L^{-1}$ in spring and the highest value of $4.5{\times}10^5cells{\cdot}L^{-1}$ in winter. The seasonal succession of the dominant species were Chaetoceros curvisetus, Ch. debilis in summer, Eucampia zodiacus in autumn, E. zodiacus, Thalassiosira curviseriata in winter and Skeletonema costatum -ls (like species), Leptocylindrus danicus in spring. According to principal component analysis, the phytoplankton community of the CWoCSS was characterized by the mixing rate between the freshwater inflow from Somjin River and the seawater of the South Sea, Korea.

Study on the elution of biostimulant for in-situ bioremediation of contaminated coastal sediment (오염된 연안저질의 현장생물정화를 위한 미생물활성촉진제의 용출특성 연구)

  • Woo, Jung-Hui;Song, Young-Chae;Senthilkumar, Palaninaicker
    • Journal of Navigation and Port Research
    • /
    • v.38 no.3
    • /
    • pp.239-246
    • /
    • 2014
  • A study on the elution characteristics of biostimulating agents (sulfate and nitrate) from biostimulants which are used for in-situ bioremediation for the coastal sediment contaminated with organic matter was performed. The biostimulating agents were mixed with the coastal sediment, and then massed the mixture into ball. Two kinds of ball type biostimulant were prepared by coating the ball surface with two different polymers, cellulose acetate and polysulfone. A granular type biostimulant (GTB) was also prepared by impregnating a granular activated carbon in the biostimulating agent solution. The image of scanning electron microscopy for the biostimulant coated with cellulose acetate (CAB) showed that the inner side of the coating layer consisted of irregular and bigger size of pores, and the surface layer had tight structure like beehive. For the biostimulant coated with polyfulfone (PSB), the whole coating layer had a fine structure without pore. The elution rate of the biostimulating agents for the CAB was higher than that for the PSB, and the elution rate for the GTB was considerably higher than that for the PSB in distilled water as well as in sea water. The elution rate of the biostimulating agents in turbulent water flow was about 3 times higher than that in standing water, and the elution rate of nitrate was higher than that of sulfate from the stimulating agents.

Temporal and Spatial Variations of Temperature and Salinity around Ganjeol Point in the Southeast Coast of Korea (한국 남동해 간절곶 주변해역의 열염구조와 시공간적 변동 특성)

  • Choo, Hyo-Sang;Jang, Duck-Jong
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.20 no.5
    • /
    • pp.474-485
    • /
    • 2014
  • Temporal and spatial variations of temperature and salinity around Ganjeol Point during January, April, August and November 2011 were studied using the data from CTD observations and temperature monitoring buoys deployed at 20 stations in the southeast coast of Korea. Temperature and salinity were nearly homogeneous through the whole depth by mixing of the seawater in spring and winter related to the sea surface cooling. Stratification induced by the river runoff and the bottom cold water was clear in summer. In autumn, sea water had vertical mixing initiated from surface layer and weak stratification at the middle and bottom layers. Low temperature and high salinity emerged throughout the year near Ganjeol Point, which inferred from turbulent mixing and upwelling by its topographical effect. Major periods of 1/4~1.4 day temperature fluctuations were recorded for the most part of the stations. According to the cross spectral density analysis, high coherence and small time lag for temperature fluctuation between layers were shown at Ganjeol Point. However, those features at the northen area of Hoeya river were opposed to Ganjeol Point. From analyses, thermohaline structure and its fluctuation around Ganjeol Point were characterized into those three parts, the south of Ganjeol Point, Ganjeol Point and the north of Ganjeol Point.

Hydraulic Characteristics of Dam Break Flow by Flow Resistance Stresses and Initial Depths (흐름저항응력 및 초기수심에 따른 댐붕괴류의 수리특성)

  • Song, Chang Geun;Lee, Seung Oh
    • Journal of Korea Water Resources Association
    • /
    • v.47 no.11
    • /
    • pp.1077-1086
    • /
    • 2014
  • The flood wave generated due to dam break is affected by initial depth upstream since it is related with hydraulic characteristics propagating downstream, and flow resistance stress has influence on the celerity, travel distance, and approaching depth of shock wave in implementing numerical simulation. In this study, a shallow water flow model employing SU/PG scheme was developed and verified by analytic solutions; propagation characteristics of dam break according to flow resistance and initial depth were analyzed. When bottom frictional stress was applied, the flow depth was relatively higher while the travel distance of shock wave was shorter. In the case of Coulomb stress, the flow velocity behind the location of dam break became lower compared with other cases, and showed values between no stress and turbulent stress at the reach of shock wave. The value of Froude number obtained by no frictional stress at the discontinuous boundary was the closest to 1.0 regardless of initial depth. The adaption of Coulomb stress gave more appropriate results compared with turbulent stress at low initial depth. However, as the initial depth became increased, the dominance of flow resistance terms was weakened and the opposite result was observed.

A CFD Study on Aerodynamic Performances by Geometrical Configuration of Guide Vanes in a Denitrification Facility (탈질 설비 내 안내 깃의 기하학적 형상에 따른 공력 성능에 대한 전산 해석적 연구)

  • Chang-Sik, Lee;Min-Kyu, Kim;Byung-Hee, Ahn;Hee-Taeg, Chung
    • Clean Technology
    • /
    • v.28 no.4
    • /
    • pp.316-322
    • /
    • 2022
  • The flow pattern at the inlet of the catalyst layer in a selective catalytic reduction (SCR) system is one of the key parameters influencing the performance of the denitrification process. In the curved diffusing parts between the ammonia injection grids and the catalyst layers, guide vanes are installed to improve flow uniformity. In the present study, a numerical simulation has been performed to investigate the effect of the geometrical configuration of the guide vanes on the aerodynamic characteristics of a denitrification facility. This application has been made to the existing SCR process in a large-scaled coal-fired power plant. The flow domain to be solved covers the whole region of the flow passages from the exit of the ammonia injection gun to the exit of the catalyst layers. ANSYS-Fluent was used to calculate the three-dimensional steady viscous flow fields with the proper turbulence model fitted to the flow characteristics. The root mean square of velocity and the pressure drop inside the flow passages were chosen as the key performance parameters. Four types of guides vanes were proposed to improve the flow quality compared to the current configuration. The numerical results showed that the type 4 configuration was the most effective at improving the aerodynamic performance in terms of flow uniformity and pressure loss.

Chemical Characteristics of Water Types in the Korea Strait (해양 화학적 특성으로 본 대한해협의 수계)

  • LEE Won Jae;CHO Kyu Dae;CHOO Hyo Sang
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.17 no.3
    • /
    • pp.219-229
    • /
    • 1984
  • Physical and chemical survey on western channel of the Korea Strait was made using oceanographic data from July 25 to July 31, 1983. Four water types were distinguished at western channel: runoff of the Nakdong River, Tsushima Current Waters, Keoje Coastal Waters, and Ulsan Coastal Waters. Influence of the Nakdong River was greater at Southern East Coast near Yeong-Do Island in Pusan than at Keoje Coast. General characteristics of these four water types were as follows : For runoff of the Nakdong River, transparency was within 3 m, water colour chinese yellow (number 11), surface temperature $18{\sim}19^{\circ}C$, salinity less than $31\%0$, surface dissolved oxygen (D.O.) $4.5{\sim}5.0ml/l$, contents of phosphate $0.25{\sim}0.5{\mu}g-at./l$ ; these values were the highest among these four water types. For Tsushima Current waters, transparency was greater than 15 m, waters color blue (number $2{\sim}4$), surface temperature about $23^{\circ}C$, salinity $32{\sim}33\%0$, and surface D.O. greater than 5,0 ml/l. Phosphate, nitrate and silicate were less than 0.25, 2.0, and $2.5{\mu}g-at./l$, respectively; these values were the lowest among these four water types. Keoje Coastal Waters had low temperature ranging $20{\sim}21^{\circ}C$ at surface, and high salinity greater than $33\%0$. D.O. was less than 5.0 ml/l, phoshpate, $0.5{\mu}g-at./l$ nitrate and silicate were less than $3.5{\mu}g-at./l$. Ulsan Coastal Waters had the lowest surface temperature among these four types; surface temperature was less than $16^{\circ}C$, salinity greater than $33.5\%0$, and D.O., phosphate and nitrate had very high values. It seems that these high values resulted from upwelling phenomena.

  • PDF

Risk factors for food allergy among children in Seoul: focusing on dietary habits and environmental factors (서울시 일부 아동의 식품알레르기 위험요인 : 식품 섭취와 환경적 요인을 중심으로)

  • Jang, Mijung;Kim, KyooSang
    • Journal of Nutrition and Health
    • /
    • v.52 no.6
    • /
    • pp.559-568
    • /
    • 2019
  • Purpose: This study examined the prevalence of food allergies and allergenic factors in a selected sample of children living in Seoul, Korea, along with their dietary habits, environmental factors, and diseases as risk factors for food allergy. The results of this study will provide basic data for addressing food allergies. Methods: We selected 3,004 pre-school and school-age children, aged 0 ~ 12, in the 25 districts of Seoul as the study sample. Structured self-report questionnaires were administered over a two-month period in July-August 2018, and the children's parents recorded the answers on their children's behalf. The research tools in this study included the Korean version of the questionnaire from the International Study of Asthma and Allergies in Childhood (ISAAC). Results: The physician-diagnosed prevalence rate of food allergies was 14.2%, while 20.4% of the children experienced allergic symptoms at least once and 17.4% reported symptoms within the previous 12 months. The children's symptoms included skin problems (88.1%), gastrointestinal issues (19.2%), oral issues (16.7%), respiratory issues (12.7%), and systemic issues (1.3%). The causes of allergies included eggs, peaches, milk, peanuts, and shrimps. The factors influencing the experience of food allergies were the consumption of cereal (aOR, 1.52; 95% CI, 1.09 ~ 2.10; p = 0.013), potatoes (aOR, 1.88; 95% CI, 1.33 ~ 2.65; p < 0.001), and fast food (aOR, 1.73; 95% CI, 1.10 ~ 2.72; p = 0.017). Having food allergy symptoms was associated with a higher risk of experiencing asthma (aOR, 4.22 95% CI, 3.10 ~ 5.76; p < 0.001), allergic rhinitis (aOR, 2.53; 95% CI, 2.03 ~ 3.15; p < 0.001), and atopic dermatitis symptoms (aOR, 3.56; 95% CI, 2.88 ~ 4.40; p < 0.001). Conclusion: Episodes of food allergies warrant examining regular food consumption and placing dietary restrictions through early diagnosis as these episodes may imply the presence of other allergies. Our findings offer basic insights into the patterns, prevalence and symptoms of children's food allergies in Seoul, and our findings will contribute to identifying effective interventions for food allergies.

Dispersal of Hazardous Substance in a City Environment Based on Weather Conditions and Its Risk Assessment at the Pedestrian Level (기상조건에 따른 도시내 위험물질 확산정보와 보행자환경 위험영향평가)

  • Kim, Eun-Ryoung;Lee, Gwang-Jin;Yi, Chaeyeon
    • Journal of Environmental Impact Assessment
    • /
    • v.26 no.4
    • /
    • pp.242-256
    • /
    • 2017
  • In this paper, dispersion scenarios concerning various meteorological conditions and real urban structures were made to estimate the impacts of hazardous substance leakage accidents and to reduce damages. Based on the scenario of the hazardous substance dispersion, the characteristics of the risk in the pedestrian environment were analyzed in Gangnam, Seoul. The scenarios are composed of 48 cases according to the meteorological conditions of wind direction and wind speed. In order to analyze the dispersion characteristics of the hazardous substances, simulations were conducted using a computational fluid dynamic (CFD) model with hydrogen fluoride releases. The validation for the simulated wind was conducted at a specific period, and all the calculated verification indices were within the valid range. As a result of simulated dispersion field at pedestrian level, it was found that the dispersion pattern was influenced by the flow, which was affected by the artificial obstacles. Also, in the case of the weakest wind speed of the inflow, the dispersion of the hazardous substance appeared in the direction of the windward side at the pedestrian level due to the reverse flow occurred at lower layers. Through this study, it can be seen that the artificial structures forming the city have a major impact on the flow formed in urban areas. The proposed approach can be used to simulate the dispersion of the hazardous substances and to assess the risk to pedestrians in the industrial complexes dealing with actual hazardous substances in the future.

An Estimation of Roughness Coefficient in a Channel with Roughness Correction Blocks (조도보정 블록 수로에서의 조도계수 추정)

  • Choi, Heung Sik;Kim, Si Hoon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.34 no.1
    • /
    • pp.107-116
    • /
    • 2014
  • A volume density of roughness correction blocks in a channel is defined and the corresponding roughness coefficient(n) is estimated by analyzing the diverse hydraulic characteristics of VR, the product of the average velocity and the hydraulic radius, block Reynolds number ($Re^*$), drag coefficient ($\acute{C}_D$), and the roughness coefficient ($n_b$) of bottom shear. The increase of VR and block Reynolds number causes the exponential decrease of roughness coefficient converged to a constant value as expected. The drag coefficient also exponentially decreases as block Reynolds number increases as well. The drag force is governed by the block shape defined by volume density in high block Reynolds number of turbulent flow region. For more accurate estimation of roughness coefficient the use of the correlation equation of it is required by block Reynolds number and volume density. The regression equations for n-VR, $\acute{C}_D-Re^*$, and $n_b-\acute{C}_D$ are presented. The regression equations of roughness coefficient are also presented by block Reynolds number and volume density. The developed equation of roughness coefficient by block Reynolds number and volume density has practical use by confirming the coincidence between the experimental results and the results of HEC-RAS using the developed equation.