• Title/Summary/Keyword: 난류연소모델

Search Result 137, Processing Time 0.023 seconds

가시화를 이용한 SI 엔진의 연소 진단

  • 엄인용
    • 한국가시화정보학회:학술대회논문집
    • /
    • 2005.04a
    • /
    • pp.115-154
    • /
    • 2005
  • SI 엔진의 연소특징은 비정상 난류 예혼합 화염이며 여기서 내부 유동은 직접 화염 전파에 영향을 미치며 난류와 거시적 유동의 패턴 모두 중요한 역할을 한다. 내연기관 연소에서 난류는 매우 중요한 역할을 하고 통상 엔진 속도($\approx$흡입유동 속도)에 비례하며 그 주요 역할은 고속 운전 시 해당 사이클 내에 연소가 완료되는 데 기여하지만 출력저하, 제어 및 측정 그리고 사이클 변동과 관련하여 실질적으로 난류 제어를 통한 엔진 성능 개선은 사실상 불가능하다. 실물 엔진의 성능 파라미터로 주로 유동의 거시적 거동이 사용되며 이 유동과 연료 분사계가 혼합기 분포 상태와 화염 전파 방향을 결정하여 최종적으로 엔진의 성능을 지배한다. 따라서 가시화를 통한 연소 진단도 이 현상에 주목할 필요가 있으며 거시적 파라미터를 성능에 연관하는 다양한 기법이 존재하고 이들은 매우 풍부한 데이터베이스를 통해 비교적 정확한 성능의 예측을 가능하게 하고 이 점에 주목한 엔진만 성공을 거두었다. 이 거시적 현상에 주목하여 가시화를 통해 성층화 현상을 실험적으로 해석한 예를 제시하였다. SI 엔진 가시화에서 기법보다 중요한 것은 현상의 이해이다. 이를 위해 성공적 가시화 진단을 위해서는 우선 현상에 대한 모델링이 필요하고 이 모델에서 가시화를 통해 규명 가능한 현상을 추출해 내는 것이다.

  • PDF

Analysis for Combustion Characteristics of Hybrid Rocket Motor (하이브리드 로켓의 연소특성 해석)

  • 김후중;김용모;윤명원
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.6 no.1
    • /
    • pp.21-29
    • /
    • 2002
  • Hybrid propulsion systems provide many advantages in terms of stable operation and safety. However, classical hybrid rocket motors have lower fuel regression rate and combustion efficiency compared to solid propellant rocket motor. The recent research efforts are focused on the improvement of volume limitation and regression rate in the hybrid rocket engine. The present study has numerically investigated the combustion processes in the hybrid rocket engine. The turbulent combustion is represented by the eddy breakup model and Hiroyasu and Nagle and Strickland-Constable model are used for soot formation and soot oxidation. Radiative heat transfer is modeled by finite volume method. To reduce the uncertainties for convective heat transfer near solid fuel surface having strong blowing effect, the Low Reynolds number $\kappa-\varepsilon$ turbulent model is employed. Based on numerical results, the detailed discussion has been made for the turbulent combustion processes in the vortex hybrid rocket engine.

A Study for the Advanced Design of Rotary Kiln Incinerator III : 3-Dimensional CC1$_4$/CH$_4$Gas-phase Turbulent Reaction Model (로타리 킬른 소각로 고도 설계를 위한 연구 III : 3차원 CC1$_4$/CH$_4$기상난류 반응 모델)

  • 엄태인;장동순;채재우
    • Journal of Energy Engineering
    • /
    • v.2 no.1
    • /
    • pp.54-67
    • /
    • 1993
  • Two turbulent reaction models of the premixed CC1$_4$/CH$_4$/air mixture are successfully incorporated in a 3-dimensional computer program and is applied for Dow Chemical incinerator equipped with two main off-center burners. The first reaction model is fast chemistry model(model 1), in which chemical reaction is governed by the turbulent mixing itself. And the second one is nonequilibrium model(model 2), where the effect of the chemical kinetics due to the presence of CC1$_4$is considered by the incorporation of the burning velocity data of CC1$_4$. The second model not only shows the flame inhibition trend due to the presence CC1$_4$compound, but also predicts qualitatively the vortical stratification of the CC1$_4$concentration appeared experimentally at the kiln exit. Other comparisions of two models are made in detail.

  • PDF

Large Eddy Simulation of Turbulent Premixed Combustion Flow around Bluff Body based on the G-equation with Dynamic sub-grid model (Dynamic Sub-grid 모델을 이용한 G 방정식에 의한 보염기 주위의 난류 예혼합 연소에 관한 대 와동 모사)

  • Park, Nam-Seob;Ko, Sang-Cheol
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.34 no.8
    • /
    • pp.1084-1093
    • /
    • 2010
  • Large eddy simulation of turbulent premixed flame stabilized by the bluff body is performed by using sub-grid scale combustion model based on the G-equation describing the flame front propagation. The basic idea of LES modeling is to evaluate the filtered-front speed, which should be enhanced in the grid scale by the scale fluctuations. The dynamic subgrid scale models newly introduced into the G-equation are validated by the premixed combustion flow behind the triangle flame holder. The calculated results can predict the velocity and temperature of the combustion flow in good agreement with the experiment data.

Comparative Study on the Effect of Turbulence Models for the Numerical Analysis on Exhaust Plume of Oxidizer-Rich Preburner (산화제과잉 예연소기 배기플룸 수치해석에서의 난류모델에 따른 효과 비교연구)

  • Ha, Seong-Up;Moon, Il-Yoon;Moon, Insang;Lee, Soo-Yong
    • Aerospace Engineering and Technology
    • /
    • v.13 no.1
    • /
    • pp.63-69
    • /
    • 2014
  • The oxidizer-rich preburner's combustion tests were fulfilled in the development process of staged combustion cycle rocket engines. The exhaust plume from an oxidizer-rich preburner is relatively transparent because combustion takes place in oxidizer rich state. During hot fire tests a still and infrared images were captured to visualize the plume structure, temperature distribution and so on. In addition, the exhaust plume was numerically investigated to figure out the detailed characteristics. The combustion was not considered for the numerical modeling, but the mixing of exhaust plume with circumstantial air was modeled by species transport model with several turbulence models. The inner structure of plume was configured out by the comparison of numerical results with experimental results, and the validity of applied numerical models was verified.

Numerical Study of High Resolution Schemes for GH2/GO2 Rocket Combustor using Single Shear Coaxial Injector (단일 전단 동축 분사기를 가지는 GH2/GO2 로켓 연소기의 고해상도 수치해석)

  • Jeong, Seung-Min;Um, Jae-Ryeong;Choi, Jeong-Yeol
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.22 no.6
    • /
    • pp.72-83
    • /
    • 2018
  • In this study, a series of CFD analyses were carried out for a hydrogen rocket combustor with a single shear coaxial injector. A hybrid RANS/LES approach was used for the turbulent combustion analysis with a two-dimensional axisymmetric configuration. Three reaction mechanisms, three spatial discretization methods, and three levels of grid resolution were compared to determine an appropriate CFD approach. The performance of the CFD prediction were investigated by comparing the wall heat flux with experimental data. Investigation of the flow field results provides an insight into the characteristics of the turbulent reacting flow of a rocket combustor with a shear coaxial injector.

Computation of Turbulent Flows in Swirl Combustor (동축의 선회류들이 배합되는 연소기내 난류유동의 수치해석)

  • 백석철;김광용
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.10 no.4
    • /
    • pp.511-518
    • /
    • 1986
  • 본 연구에서는 난류모델로는 기존의 K-.epsilon.모델과 LPS방법으로 수정된 K-.epsilon. 모 델을, 수치적 Scheme으로는 Hybrid Difference Scheme과 Skew-upwind Difference Sc- heme을 사용하여 그 결과를 각각 비교하였다.

Numerical Study of Turbulence Modeling for Analysis of Combustion Instabilities in Rocket Motor (로켓엔진의 연소 불안정 해석을 위한 난류 모델링의 수치적 연구)

  • 임석규;노태성
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.6 no.2
    • /
    • pp.75-84
    • /
    • 2002
  • A numerical analysis of unsteady motion in solid rocket motors with a nozzle has been conducted. The numerical formulation including modified $\kappa$-$\varepsilon$ turbulence model treats the complete conservation equation for the gas phase and the one-dimensional equations in the radial direction for the condensed phase. A fully coupled implicit scheme based on a dual time-stepping integration algorithm has been adopted to solve the governing equations. After obtaining a steady state solution, pulse and periodic oscillations of pressure are imposed at the head-end to simulate acoustic oscillations of a travelling-wave motion in the combustion chamber. Various steady and unsteady state features in the combustion chamber of a rocket motor has been analyzed as results of numerical calculations.

Large Eddy Simulation of Turbulent Flows over Backward-facing Steps (후향 계단에서 난류 유동에 대한 대와동모사)

  • Hwang, Cheol-Hong;Kum, Sung-Min
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.10 no.3
    • /
    • pp.507-514
    • /
    • 2009
  • Large eddy simulation code was developed to predict the turbulent flows over backward-facing steps including a recirculating flow phenomena. Localized dynamic ksgs-equation model was employed as a LES subgrid model and the LES solver was implemented on parallel computer consisting of 16 processors to reduce computational costs. The results of laminar flow showed qualitative and quantitative agreements between current simulations and experimental results availablein literatures. The simulation of the turbulent flows also yielded reasonable results. From these results, it can be expected that developed LES code will be very useful to analyze the combustion in stabilities and noise of a practical combustor in the future.

Influence of piston bowl geometry on the in-cylinder flow of HCCI Engine (HCCI 엔진의 실린더 내 유동에 대한 피스톤 보울 형상의 영향)

  • Nam, Seung Man;Lee, Kye Bock
    • Journal of Energy Engineering
    • /
    • v.22 no.4
    • /
    • pp.399-405
    • /
    • 2013
  • The gas motion inside the engine cylinder plays a very important role in determining the thermal efficiency of an internal combustion engine. A precise information of in-cylinder three dimensional complex gas motion is crucial in optimizing engine design. Homogeneous charge compression ignition (HCCI) engine is a combustion concept, which is a hybrid between Otto and Diesel engine. The turbulent diffusion leads to increased rates of momentum, heat and mass transfer. The in-cylinder turbulence flow was found to affect the present HCCI combustion mainly through its influence on the wall heat transfer. This study investigates the effect of piston geometry shape on the turbulent flow characteristics of in-cylinder from the numerical analysis using the LES model and the results obtained can offer guidelines of the combustion geometries for better combustion process and engine performance.