Comparative Study on the Effect of Turbulence Models for the Numerical Analysis on Exhaust Plume of Oxidizer-Rich Preburner

산화제과잉 예연소기 배기플룸 수치해석에서의 난류모델에 따른 효과 비교연구

  • Received : 2014.02.05
  • Accepted : 2014.07.01
  • Published : 2014.07.01

Abstract

The oxidizer-rich preburner's combustion tests were fulfilled in the development process of staged combustion cycle rocket engines. The exhaust plume from an oxidizer-rich preburner is relatively transparent because combustion takes place in oxidizer rich state. During hot fire tests a still and infrared images were captured to visualize the plume structure, temperature distribution and so on. In addition, the exhaust plume was numerically investigated to figure out the detailed characteristics. The combustion was not considered for the numerical modeling, but the mixing of exhaust plume with circumstantial air was modeled by species transport model with several turbulence models. The inner structure of plume was configured out by the comparison of numerical results with experimental results, and the validity of applied numerical models was verified.

다단연소사이클 로켓엔진 개발의 일환으로 산화제 과잉 예연소기의 단독 연소시험이 수행되었다. 산화제 과잉 연소라는 특성상 비교적 투명한 상태의 후류를 볼 수 있었고, 예연소기 연소시험 중 배출되는 화염을 일반 캠코더와 열화상 캠코더를 이용하여 촬영하였으며, 이를 통해 화염의 형태와 온도분포 등을 관찰할 수 있었다. 배기 플룸 구조와 특성을 좀 더 명확히 파악하기 위하여 열유동 수치해석이 함께 수행하였다. 연소는 고려하지 않았으며, 배기가스와 주변공기의 혼합은 화학종 수송 모델을 사용하였고, 서로 다른 난류 모델을 적용하여 해석을 수행하였다. 시험과 해석 결과를 비교함으로서 플룸의 내부구조를 파악하였고, 적용된 해석모델의 타당성을 검증할 수 있었다.

Keywords

References

  1. George P. Sutton, Oscar Biblarz, "Rocket Propulsion Elements," John Wiley & Sons, Inc., 7th edition, 2001, pp. 639-659.
  2. Choi, H.-S., "The Effect of Gas Thermochemical Model on the Flowfield of Supersonic Rocket in Propulsive Flight," KSPE, Vol. 6, No. 1, 2002, pp.12-20.
  3. Kang, S.-I. and Huh, H.-I., "A CFD Study for Rocket Exhaust Flow using Single Species, Unreacted Flow Mode," Aerospace Engineering and Technology, Vol. 11, No. 1, 2012, pp. 126-134.
  4. Kim, Y.-M., "Navier-Stokes Solutions of Rocket Nozzle Flows Containing an Exhaust Plume," KSAS, Vol. 27, No. 2, 1999, pp. 101-110.
  5. Kam, H.-D., Kim, J.-S. and Bae, D.-S., "Performance Analysis of the Supersonic Nozzle Employed in a Small Liquid-rocket Engine for Ground Firing Test," 2011 KSPE Fall Conference, 2011, pp. 321-324.
  6. Menter, F. R., "Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications," AIAA, Vol. 32, No. 8, 1994, pp. 1598-1605. https://doi.org/10.2514/3.12149
  7. Raymond S. Castner, "Analysis of Plume Effects on Sonic Boom Signature for Isolated Nozzle Configurations," AIAA-2008-3729, 2008, pp. 1-14.
  8. Moon, I.-Y., Moon, I.-S. and Kang, S.-H., "Design Point Operating Characteristics of an Oxidizer Rich Preburner", 2012 Fall Conference of the Korean Society of Propulsion Engineers, 2012, pp. 483-489.
  9. Lee, S.-M., Ha, S.-U. and Lee, S.-Y., "Numerical Analysis on Cooling Characteristics of Oxidizer-Rich Preburner ", 2012 KSPE Fall Conference, 2012, pp. 470-478.
  10. ANSYS, Inc., "ANSYS FLUENT 14 User's Guide," ANSYS, Inc.
  11. http://www.grc.nasa.gov/