• Title/Summary/Keyword: 난류연소모델

Search Result 137, Processing Time 1.698 seconds

Computational Investigation of Pintle Nozzle Flow (핀틀 노즐 유동장의 수치해석적 연구)

  • Kim, Joung-Keun;Lee, Ji-Hyung;Chang, Hong-Been
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.13 no.2
    • /
    • pp.35-41
    • /
    • 2009
  • Both the nozzle expansion ratio and the chamber pressure are simultaneously and continuously changed according to pintle movement, resulting in a different internal flow structure and flow separation characteristics. In this paper, the pintle position effect on nozzle flow structure and separation phenomena is analyzed by experimental-aided Computational Fluid Dynamic(CFD). Among the turbulent models for RANS(Reynold Averaged Navier Stokes) in Fluent, Spalart-Allmaras model is better agreement with the nozzle wall pressure distribution attained by cold-flow test than other models. And even if a conical nozzle is used, there is a shock structure similar to cap-shock pattern mainly occurred in contoured or shaped optimized nozzle because of internal shock generated from pintle tip flow separation.

Numerical analysis of turbulent recirculating flow in swirling combustor by non-orthogonal coordinate transformation (비직교 좌표변환에 의한 선회연소기내 난류재순환유동의 수치해석)

  • 신종근;최영돈
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.12 no.5
    • /
    • pp.1158-1174
    • /
    • 1988
  • A numerical technique is developed for the solution of fully developed turbulent recirculating flow in the passage of variable area using the non-orthogonal coordinate transformation. In the numerical analysis, primitive pressure-velocity finite difference equations were solved by SIMPLER algorithm with 2-equation turbulence model and algebraic stress model (ASM). QUICK scheme on the differencing of convective terms which is free from the inaccuracies of numerical diffusion has been applied to the variable grids and the results compared with those from HYBRID scheme. In order to test the effect of streamline curvatures on turbulent diffusion Lee and Choi streamline curvature correction model which has been obtained by modifying the Leschziner and Rodi's model is testes. The ASM was also employed and the results are compared to those from another turbulence model. The results show that difference of convective differencing schemes and turbulence models give significant differences in the prediction of velocity fields in the expansion region and outlet region of the combustor, however show little differences in the parallel flow region.

On the Use of the Primary Breakup Model with Integration of Internal-nozzle Turbulence Impact (노즐내 난류유동 효과를 고려한 액주 분열 모델의 타당성 연구)

  • Sayop Kim;Taehoon Han;Daesik Kim
    • Journal of ILASS-Korea
    • /
    • v.29 no.3
    • /
    • pp.105-111
    • /
    • 2024
  • Although the classic Kelvin-Helmholtz model of aerodynamically driven jet breakup(primary breakup) has been widely employed in engine CFD codes for the last three decades, the model is not generally predictive. This lack of predictive capability points to the likelihood of an incorrect physical basis for the model formulation. As such, there have been more recent spray-model development efforts that incorporate additional sources of jet instability and breakup, including nozzle-generated turbulence and cavitation but predictive capabilities have remained elusive. Meanwhile, it should be noted that modern combustors increasingly operate under low-temperature combustion(LTC) conditions, where ambient densities and aerodynamic forces are much lower than under classical operating conditions. Therefore, further consideration of physical model formulation is needed. The previous literature introduced a new primary atomization modeling approach premised on experimental measurements by the Faeth group, which demonstrate that breakup is governed by nozzle-generated turbulence under low ambient density conditions. In this new modeling approach, termed the KH-Faeth model, two different primary breakup models are combined to allow the hybrid breakup modeling approach, i.e. Kelvin- Helmholtz instability breakup mechanism and turbulence-induced breakup are competed via dominant breakup rate evaluation. In the current work, we implement this hybrid KH-Faeth model within the open-source CFD framework OpenFOAM and validate the model against detailed drop sizing measurements stemming from collaborative experiments between Georgia Tech and Argonne National Laboratory.

Combined raidation-forced convection in a circular tube flow (원관내 유동에서의 복사 및 강제대류 열전달에 관한 연구)

  • 임승욱;이준식;이택식
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.14 no.6
    • /
    • pp.1652-1660
    • /
    • 1990
  • Combined radiative-convective heat transfer in a hot gas tube flow has been investigated numerically and experimentally. In the numerical analysis, a standard k-.epsilon. model is used for the evaluation of turbulent shear stresses and spherical harmonics method with the Weighted Sum of Gray Gases Model for the solution of radiative transfer equation. In the experimental study measured are the velocity and temperature of the hot gas flow generated by the propane gas combustion, and tude wall heat flux distribution. Numerical results are compared with experimental ones and it is confirmed that P-3 provides quite reliable results in the analysis of the combined radiation-convection system.

Discussion on the Practical Use of CFD for Grate Type Waste Incinerators (회격자식 소각로의 열유동 해석과 결과 분석에 대한 고찰)

  • Ryu C.;Choi S.
    • Journal of computational fluids engineering
    • /
    • v.7 no.3
    • /
    • pp.17-26
    • /
    • 2002
  • Computational fluid dynamic(CFD) analysis has been frequently applied to the waste incinerators to understand the flow performance for various design and operating parameters. Since the computational modeling inevitably requires many simplifications and complicated sub-models, validity of the results should be carefully evaluated. In this study, major computational modeling and procedure of usual simulation methods for the grate-type waste incinerators were assessed. Usual simulation method does not explicitly incorporate the waste combustion, simply by assuming the combustion gas properties from the waste bed which is treated as an inlet plane. However, effect of this arbitrary assumption on the overall flow pattern is not significant, since the flow pattern is dominated by strong pattern of jet flows of the secondary air. Thus, this method is valid in understanding the effect of flow-related parameters. In analyzing the results, deriving conclusive information directly from temperature and chemical species concentration should be avoided, since the model prediction for the gaseous reaction and the radiation reveals significant discrepancies against the actual phenomena. Use of quantitative measures such as residence time is very efficient in evaluating the flow performance.

Dynamic Numerical Modeling for LOx Swirl Injector at Supercritical Conditions (초임계 상태에서의 LOx 스월 인젝터에 대한 동적 수치 모델링)

  • Kim, Kuk-Jin;Heo, Jun-Young;Kim, Jong-Chan;Sung, Hong-Gye
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.42-46
    • /
    • 2009
  • For understanding of high performance liquid rocket engine operating at high pressure, dynamic characteristics of liquid oxygen in a swirl injector operating at supercritical conditions has been numerically investigated. Turbulent numerical model is based on large eddy simulation and contains full conservation laws including Soave modification of Redlich-Kwong equation of state and Chung's model. Preconditioning method is applied to get an effective convergence rate. Numerical analysis results are compared with the one that ideal equation of state applied to. Differences of thermodynamic properties and mixing dynamics are investigated at liquid phase area inside injector and combustion chamber.

  • PDF

The Interaction of Gaseous Diffusion Flames (기체확산 화염간의 상호작용)

  • 김호영;전철균
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.15 no.1
    • /
    • pp.355-365
    • /
    • 1991
  • New definition for the interaction of flames is introduced and interacting turbulent diffusion flames issuing from two rectangular nozzles are investigated on the basis of the definition. Theoretical study through numerical model is carried out and experiment for validation is conducted. The characteristics of interaction due to the variation of major parameters such as nozzle spacing, Reynolds number and nozzle aspect ratio are studied. Results show that strong interaction occurs for small nozzle spacing, small Reynolds number and large aspect ratio. In order of their magnitude, the intensity of interactions on the individual transport mechanism is momentum, heat and mass. It is also found that interaction makes flames longer, tilted and finally merged. Increase of velocities and temperature, decrease of oxygen concentration and depression of turbulence are occurred in the region between flames.

Computational Fluid Dynamics(CFD) Simulation and in situ Experimental Validation for the Urea-Based Selective Non-Catalytic Reduction(SNCR) Process in a Municipal Incinerator (생활폐기물 소각장 2차 연소로에서 요소용액을 이용한 선택적무촉매환원 공정에 대한 전산유체역학 모사 및 현장 검증)

  • Kang, Tae-Ho;Nguyen, Thanh D.B.;Lim, Young-Il;Kim, Seong-Joon;Eom, Won-Hyeon;Yoo, Kyung-Seun
    • Korean Chemical Engineering Research
    • /
    • v.47 no.5
    • /
    • pp.630-638
    • /
    • 2009
  • A computational fluid dynamics(CFD) model is developed and validated with on-site experiments for a urea-based SNCR(selective non-catalytic reduction) process to reduce the nitrogen oxides($NO_x$) in a municipal incinerator. The three-dimensional turbulent reacting flow CFD model having a seven global reaction mechanism under the condition of low CO concentration and 12% excess air and droplet evaporation is used for fluid dynamics simulation of the SNCR process installed in the incinerator. In this SNCR process, urea solution and atomizing air were injected into the secondary combustor, using one front nozzle and two side nozzles. The exit temperature($980^{\circ}C$) of simulation has the same value as in situ experiment one. The $NO_x$ reduction efficiencies of 57% and 59% are obtained from the experiment and CFD simulation, respectively at NSR=1.8(normalized stoichiometric ratio) for the equal flow rate ratio from the three nozzles. It is observed in the CFD simulations with varying the flowrate ratio of the three nozzles that the injection of a two times larger front nozzle flowrate than the side nozzle flowrate produces 8% higher $NO_x$ reduction efficiency than the injection of the equal ratio flowrate in each nozzle.

CFD Simulation Study to analyze the Dispersion and Explosion of Combustible Gas (CFD를 이용한 가연성 가스의 확산 및 폭발 Simulation)

  • Jang, Chang-Bong;Lee, Hyang-Jik;Lee, Min-Ho;Min, Dong-Chul;Back, Jong-Bae;Ko, Jae Wook;Kwon, Hyuck-Myun
    • Journal of the Korean Institute of Gas
    • /
    • v.16 no.5
    • /
    • pp.58-65
    • /
    • 2012
  • Various models are currently applied to predict the dispersion of leaked combustible gas and overpressure from a vapor cloud explosion(VCE). However, those models use simple approaches where topography and barriers of anti-leakage facilities and the effects of buildings were not sufficiently taken into considerations. For this reason, this study has proposed the dispersion process of leaked gas, distribution patterns, and flames and overpressure generated from gas explosions in 2D and 3D virtual spaces by reviewing more accurately analyzable computational fluid dynamics (CFD) model by considering various variables including combustion types of leaked substances, geometry of facility, warm currents, barriers, the influence of wind, and others. The CFD analysis results are anticipated to be usefully applied for the risk analysis of explosion and for the risk-based design.

A Numerical Study of Smoke Movement with Radiation in Atrium Fires (아트리움에서 화재 발생시 복사가 고려된 연기거동에 대한 수치해석 연구)

  • 정진용;유홍선;홍기배
    • Fire Science and Engineering
    • /
    • v.15 no.1
    • /
    • pp.7-15
    • /
    • 2001
  • This paper describes the smoke filling process of a fire field model based on a self-developed SMEP (Smoke Movement Estimating Program) codo to the simulation of fire induced flows in the atrium space (SIVANS atrium at Japan) containing smoke radiation effect. The SMEP using PISO algorithm solves conservation equations for mass, momentum, energy and species, together with those for the modified k-$\varepsilon$ turbulence model with buoyancy term. Also it solves the radiation equation using the discrete ordinates method. The result of the calculated smoke temperature containing radiation effect has shown a better prediction than the result calculated by only convection effect in comparison with the experimental data. This seems to come from the radiation effect of $H_2$O and $CO_2$ gas under smoke productions. Thus, the consideration of the radiation effect under smoke in fire should be necessary in order to get more realistic result. Also the numerical results indicated that the smoke layer is developing at a rate of about 0.1 m/s. It would take about 450 seconds after starting the ultra fast fire of 560 kW that the smoke layer move down to 1.5m above the escape level.

  • PDF