• Title/Summary/Keyword: 낙하충격해석

Search Result 95, Processing Time 0.026 seconds

Evaluation of the Dynamic Characteristics of Rubber Structure under Impact Force (충격하중을 받는 고무구조물의 동특성 평가)

  • Kim, Wan-Doo;Kim, Dong-Jin;Lee, Young-Shin
    • Elastomers and Composites
    • /
    • v.41 no.1
    • /
    • pp.40-48
    • /
    • 2006
  • Mechanical systems with rubber parts have been used widely in industry fields. The evaluation of the physical characteristics of rubber is important in rubber application. Rubber material is useful to machine component for excellent shock absorbing characteristics. The impact characteristics of rubber were examined by experimental and finite element method. The impact test was conducted with a free-drop type impact tester. The ABAQUS/Explicit was used for finite element analysis. In the finite element analysis, elastic modulus of rubber using impact force was used as dynamic modulus, which are measured and predicted with dynamic property test and WLF model. The analysis result was coincided with the experimental results.

Evaluation of Residual Strength of CFRP Pressure Vessel After Low Velocity Impact (저속 충격 하중을 받은 탄소섬유강화 복합재 압력용기의 잔류강도 저하 평가)

  • Park, Jae-Beom;Kim, Dong-Ryun;Kim, Hyung-Geun;Hwang, Tae-Kyung
    • Composites Research
    • /
    • v.21 no.3
    • /
    • pp.9-17
    • /
    • 2008
  • In this paper, the low velocity impact characteristics of filament winding CFRP pressure vessel was investigated using numerical and experimental methods. The cylinder part of CFRP vessel was impacted using triangular shape impactor which simulated the sharp edge of dropping tools and impact response behavior of CFRP was reviewed. The mechanical behavior, such as deformation and stress distribution, were also predicted by explicit finite element method and the validity of the model was investigated. For the quantitative evaluation of the residual strength of the pressure vessel after impact, a series of the ring specimens was cut from the impacted vessel and its burst pressure was measured by hydraulic pressure hoop tension test. As the results, the relationship between the residual strength degradation and the impact energy was successively obtained and a useful methodology to evaluate quantitatively the impact damage tolerance of CFRP pressure vessel was established.

The Design of a Hybrid Composite Strut Tower for Improving Impact Resistance and Light-weight (내충격성 향상 및 경량화를 위한 하이브리드 복합재료 스트럿 타워 설계)

  • Lee, Hyun Chul;Oh, Hyun Ju;Kim, Seong Su
    • Composites Research
    • /
    • v.26 no.4
    • /
    • pp.223-229
    • /
    • 2013
  • Hybrid composite strut tower was designed to prevent permanent deformation of upper mount by the impact from the uneven road. When exceeding energy absorption capacity of tire and suspension systems, residual impact is delivered to upper mount. Especially, in case of using high-rigidity suspension system for high driving performance, the conventional strut tower can be easily deformed due to reduction of energy absorption capacity of suspension systems. In this study, optimal design of hybrid composite strut tower which made of back-up metal and carbon fiber reinforced composite was suggested by using finite element analysis, and low velocity impact test was performed to investigate their dynamic characteristics. Also, 3D measuring and ultra c-scanning methods were carried out to diagnose damages in the strut towers.

A Study on Compressive Strength of Carbon/epoxy Composite Structure Repaired with Bonded Patches after Impact Damage (충격 손상된 카본/에폭시 복합재 구조의 패치 접착 보수 방안 적용 후 압축 강도 특성 평가)

  • Kong, Chang-Duk;Park, Hyun-Bum;Lim, Sung-Jin;Shin, Chul-Jin
    • Composites Research
    • /
    • v.23 no.5
    • /
    • pp.15-21
    • /
    • 2010
  • In this study, repair and maintenance schemes of the damaged composite structure was investigated, and a repair process of the carbon/epoxy laminate composite structure was investigated numerically and experimentally. The composite laminates were damaged by drop weight type impact test machine. The damaged composite structure was repaired using external patch repair method after removing damaged area. The compressive strength test and analysis results after repairing the impact damaged specimens were compared with the compressive strength test and analysis results of undamaged specimens and impact damaged specimens. Finally, the strength recovery capability by repairing were investigated.

Structural Evaluation on HIC Transport Packaging under Accident Conditions (HIC 운반용기의 사고조건에 대한 구조평가)

  • Chung Sung-Hwan;Kim Duck-Hoi;Jung Jin-Se;Yang Ke-Hyung;Lee Heung-Young
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.3 no.3
    • /
    • pp.231-236
    • /
    • 2005
  • HIC transport packaging to transport a high integrity container(HIC) containing dry spent resin generated from nuclear power plants is to comply with the regulatory requirements of Korea and IAEA for Type B packaging due to the high radioactivity of the content, and to maintain the structural integrity under normal and accident conditions. It must withstand 9 m free drop impact onto an unyielding surface and 1 m drop impact onto a mild steel bar in a position causing maximum damage. For the conceptual design of a cylindrical HIC transport package, three dimensional dynamic structural analysis to ensure that the integrity of the package is maintained under all credible loads for 9 m free drop and 1 m puncture conditions were carried out using ABAQUS code.

  • PDF

Impact Analysis of Oleo-pneumatic Nose Strut for Light Aircraft (소형항공기 올레오 타입 전방착륙장치 충격해석)

  • Park, Ill-Kyung;Choi, Sun-Woo;Jang, Jae-Won
    • Aerospace Engineering and Technology
    • /
    • v.6 no.1
    • /
    • pp.19-28
    • /
    • 2007
  • In this study, a nonlinear 2 degree of freedom mathematical model has been developed for impact analysis of the nose landing gear of a light aircraft which is composed of an wheel & tire, an Oleo-pneumatic shock strut and the castering wheel fork for the differential braking steering, and then the response of impact is computed using a numerical method. The mathematical model of a nose landing gear contains nonlinear characteristics which are an impact load - deflection property of a tire and internally frictional forces between an inner surface of an upper cylinder and a bearing of a lower rod due to side forces like the declined angle of strut, the moment due to an wheel fork, the side drag due to a steering and it is computed using the 4th-order Runge-Kutta method. The comparison process between analytical results and experimental results of the other proven nose landing gear is carried out to verify the mathematical model.

  • PDF

Evaluation of Reactor Internals Integrity due to 5.5m Concentric Free Fall of KSNP+ Reactor Vessel Closure Head (KSNP+ 원자로덮개 5.5m 수직 낙하 시 원자로내부구조물 건전성 평가)

  • Namgyng, Ihn;Jeong, Seung-Ha;Lee, Dae-Hee;Choi, Taek-Sang
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.1358-1363
    • /
    • 2003
  • Due to the application of Integrated Head Assembly (IHA) in KSNP+ reactor design, an investigation of reactor internals integrity is carried out to assure that the adoption of IHA does not affect the safety of reactor operation. One of the postulated accident events is the R.V. closure head fall from 5.5m high directly above the reactor vessel that may occur during the refueling operation. The analysis model consists of lumped mass elements of the entire reactor vessel and internals. Because of extreme load, separate elastic-plastic analyses are done for the members that undergo plastic deformation. The analysis verified that the stresses of the reactor internals and the fuel assemblies are within the bound of allowable stress limits and the integrity of the fuel assemblies is maintained.

  • PDF

A Study on Bounce Height and Impact Energy Considering Slope Height, Rockfall Weight Using Rockfall Program Considering Slope Height, Rockfall Weight (낙석해석프로그램을 이용한 비탈면 높이, 낙석중량별 도약높이 및 충격에너지 검토)

  • You, Byung-Ok;Han, Won-Jun;Lee, Sang-Duk;Shim, Jea-Won
    • Journal of the Korean GEO-environmental Society
    • /
    • v.12 no.3
    • /
    • pp.47-54
    • /
    • 2011
  • The rockfall protection fence installed to secure safety against rockfall occurring in cut slope has been designed under the condition with 50kJ of impact energy arising when the 400kg of rock block is falling from 12.5m height. However, in falling case of bigger rock block or from higher place, it is hard to be secure of safety with existing rockfall protection fence. Using the rockfall program, safety analysis for rockfall is conducted in this paper by changing slope height, separating distance from fence, and slope angle, according to rock block sizes. In the result of analysis, when a 400kg of rock block which is designed load is fallen, the existing rockfall protection fence with 2.5m height can secure most of rock fall except some cases for the slope having 20m or less hight, whereas for more than 20m height, the fallen rock is frequently splattered over the rockfall protection fence, as well as the impact energy of rockfall may exceed designed impact energy. Therefore, in the design of rock fence, it is considered appropriate to design that after conducting safety review for rockfall according to the ground conditions, evaluating the bounce height and impact energy of rock fall, and then installing appropriate rockfall protection fence would be applicable rather than just following standards based design drawing.

CFD Analysis to Estimate Drop Time and Impact Velocity of a Control Rod Assembly in the Sodium Cooled Faster Reactor (소듐냉각고속로 제어봉집합체의 낙하시간 및 충격속도 예측을 위한 CFD 해석)

  • Kim, JaeYong;Yoon, KyungHo;Oh, Se-Hong;Ko, SungHo
    • The KSFM Journal of Fluid Machinery
    • /
    • v.18 no.6
    • /
    • pp.5-11
    • /
    • 2015
  • In a pressurized water reactor (PWR), control rod assembly (CRA) falls into the guide tubes of a fuel assembly due to gravity for scram. Various theoretical approaches and numerical analyses have been performed because its shape is simple and its design was completely developed several decades ago. A control rod assembly for a sodium-cooled faster reactor (SFR) which is geometrically more complicated is being actively developed in Korea nowadays. Drop time and impact velocity of a CRA are important parameters with respect to reactivity insertion time and the mechanical robustness of a CRA and a guide duct. In this paper, computational method considering simultaneously the equation of motion for rigid body and the Navier-Stokes equations for fluid is suggested and verified by comparison with theoretical analysis results. Through this valuable CFD analysis method, drop time and impact velocity of initially designed SFR CRA are evaluated before performing scram tests with it.

Analysis of Ground Vibration due to Demolition (구조물 발파해체로 인한 지반진동의 해석 연구)

  • Kim, Seung-Kon;Park, Hoon;Yang, Hyung-Sik
    • Tunnel and Underground Space
    • /
    • v.12 no.3
    • /
    • pp.210-219
    • /
    • 2002
  • In the ground vibration due to demolition blasting vibration and impact vibration of collapsed structure are separated. In this paper, model structures were collapsed by blasting with different charge locations. Ground vibrations were measured and separated as blasting and impact vibrations by waveform and dominant frequency. Vibration characteristics of different charge locations were examined.