• Title/Summary/Keyword: 낙하충격시험

Search Result 121, Processing Time 0.028 seconds

Statistical analysis of the energy for cable cutting (케이블 절단에 필요한 에너지 통계적 분석)

  • Choi, Chang-Sun;Kang, Won-Kyu
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.11a
    • /
    • pp.400-403
    • /
    • 2011
  • We performed Instron and Impact tests to estimate necessary explosive charge weight for cutting the cable whose diameter is 22 mm. The cutting energy measured by Instron was 21.3 J. Impact test were performed 8 times each at 5 different energies. The Impact test results were analysed by Probit methods. The cutting energy was calculated 37.7 J with 99.99% probability at 99% confidence, which is roughly equivalent to 250 mg of Zirconium potassium Perchlorate (ZPP).

  • PDF

Effects of Cavitation and Drop Characteristics on Oleo-Pneumatic Type Landing Gear Systems (공동현상을 고려한 유공압 방식 착륙장치의 낙하특성에 관한 연구)

  • Han, Jae-Do;Lee, Young-Sin;Kang, Yeon-Sik;Ahn, Oh-Sung;Kong, Jeong-Pyo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.37 no.2
    • /
    • pp.193-200
    • /
    • 2009
  • This paper investigated the drop characteristics of oleo pneumatic type landing gear for small aircraft and the effects of cavitations in modeling the landing gear system. The landing gear system employed a simple oleo pneumatic type damper without a metering pin. In general, oleo-pneumatic type landing gears are light-weighted because of it's simplicity, yet they offer excellent impact absorption characteristics. In this study, the landing gear system was modeled using MSC ADAMS, which offers a drop simulation module. After modeling the system, a series of testing was conducted, using a prototype landing gear system, to validate the analysis model and simulation results. The effect of cavitation was considered in the simulation model to obtain a better correlation between the test and simulation results. The results show that adding the cavitation effect in the simulation model significantly improved the simulation model and better captured the dynamic behaviors of the landing system. Using the 'cavitation' model, dynamics characteristics of the landing gear were further evaluated for other landing conditions, such as landing in various angles of slopes.

Low-velocity Impact Damage of a Thick Pressure vessel (복합재료 만든 두꺼운 압력용기의 저속충격에 관한 연구)

  • 김형원
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2000.11a
    • /
    • pp.92-97
    • /
    • 2000
  • Low-velocity impact damage of a thick pressure vessel by composite materials was studied using the modified Herzian contact radius theory. Impactors of various masses and various tup shapes were dropped freely in the range of 20m to 200mm height. With acceleration gage and strain gage installed on the impactor, impact force and acceleration and Contact radius were measured. After a test, the samples were radiographed to scan the state of damage. Compared with hemispherical tup of 12.7mm diameter, the contact radius of hemispherical tup of 25.4mm diameter was bigger. And the experimental data and the theoretical data was different due to the mechanical properties difference. The acceleration value was changed linearly according to the height.

  • PDF

A Case Study on the Vibration Propagation Characteristics by Underwater Rock Cutting Work (수중 쇄암작업에 따른 진동 전파 특성에 관한 시공 사례)

  • Lim, Dae-Kyu;Shin, Young-Cheol;Kim, Young-Min;Lee, Chung-Eon
    • Explosives and Blasting
    • /
    • v.33 no.2
    • /
    • pp.25-39
    • /
    • 2015
  • The common underwater rock removal methods involve underwater blasting and crane's chisel dropping impact method. From an environmental point of view, these methods cause ground vibrations and underwater noise. At the site for this study, a method of dropping heavyweight chisel is selected to remove the underwater bedrock near the ferry rack in the course of improving the cargo handling ability of the loading dock. A prediction formula for the vibration was obtained based on the measurement and evaluation of the vibrations caused by the chisel dropping impacts during the test droppings. The prediction formula was successfully applied to the main construction for securing the stability of the structure.

A Study on Compressive Strength of Carbon/epoxy Composite Structure Repaired with Bonded Patches after Impact Damage (충격 손상된 카본/에폭시 복합재 구조의 패치 접착 보수 방안 적용 후 압축 강도 특성 평가)

  • Kong, Chang-Duk;Park, Hyun-Bum;Lim, Sung-Jin;Shin, Chul-Jin
    • Composites Research
    • /
    • v.23 no.5
    • /
    • pp.15-21
    • /
    • 2010
  • In this study, repair and maintenance schemes of the damaged composite structure was investigated, and a repair process of the carbon/epoxy laminate composite structure was investigated numerically and experimentally. The composite laminates were damaged by drop weight type impact test machine. The damaged composite structure was repaired using external patch repair method after removing damaged area. The compressive strength test and analysis results after repairing the impact damaged specimens were compared with the compressive strength test and analysis results of undamaged specimens and impact damaged specimens. Finally, the strength recovery capability by repairing were investigated.

Evaluation of the Residual Strength of CFRP Composite Pressure Vessel After Low Velocity Impact (CFRP 복합재압력용기의 충격후 잔류강도저하특성 평가)

  • Park, Jae-Beom;Kim, Dong-Ryun;Hwang, Tae-Kyung
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.439-442
    • /
    • 2009
  • In this study, the residual strength of CFRP filament winding pressure vessel after low velocity impact was evaluated quantitatively. After impact test, the pressure vessel was sectioned to produce 25 mm-wide ring specimen and the bursting pressure of this specimen was measured. A finite element model was also fabricated to investigate the deformation and stress distribution characteristics of the impacted CFRP vessel. The degradation of the residual strength along with the increase of impact energy was successfully measured and reviewed.

  • PDF

A Study for Felling Impact Vibration Prediction from Blasting Demolition (발파해체시 낙하충격진동 예측에 관한 연구)

  • 임대규;임영기
    • Explosives and Blasting
    • /
    • v.22 no.3
    • /
    • pp.43-55
    • /
    • 2004
  • Use term of tower style construction exceeds recently. Accordingly, according to construction safety diagnosis result, achieve removal or Improvement construction. But when work removal, must shorten shut down time. Therefore, removal method of construction to use blasting demolition of construction is very profitable. Influence construction and equipment by blasting vibration and occurrence vibration caused by felling impact. Is using disadvantageous machine removal method of construction by and economic performance by effect of such vibartion. Therefore, this research studied techniques to forecast vibartion level happened at blasting demolition and vibration reduction techniques by use a scaled model test.

Experimental Investigation on the Behaviour of CFRP Laminated Composites under Impact and Compression After Impact (CAI) (충격시 CFRP 복합재 판의 거동과 충격후 압축강도에 관한 실험적 연구)

  • Lee, J;Kong, C;Soutis C.
    • Composites Research
    • /
    • v.16 no.4
    • /
    • pp.66-73
    • /
    • 2003
  • The importance of understanding the response of structural composites to impact and CAI cannot be overstated to develop analytical models for impact damage and CAI strength predictions. This paper presents experimental findings observed from quasi-static lateral load tests, low velocity impact tests. CAI strength and open hole compressive strength tests using 3 mm thick composite plates($[45/-45/0/90]_{3s}$- IM7/8552). The conclusion is drawn that damage areas for both quasi-static lateral load and impact tests are similar and the curves of several drop weight impacts with varying energy levels(between 5.4 J and 18.7 J) follow the static curve well. In addition, at a given energy the peak force is in good agreement between the static and impact cases. It is identified that the failure behaviour of the specimens from the CAI strength tests was very similar to that observed in laminated plates with open holes under compression loading. The residual strengths art: in good agreement with the measured open hole compressive strengths. considering the impact damage site area, an equivalent hole. The experimental findings suggest that simple analytical models for the prediction of impact damage area and CAI strength can be developed on the basis of the failure mechanism observed from the experimental tests.

Impact Resistance Reliability of Sn-1.2Ag-0.5Cu-0.4In Solder Joints (Sn-1.2Ag-0.5Cu-0.4In 조성 솔더 접합부의 내 충격 신뢰성 평가)

  • Yu, A-Mi;Lee, Chang-Woo;Kim, Jeong-Han;Kim, Mok-Soon;Lee, Jong-Hyun
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.06a
    • /
    • pp.226-226
    • /
    • 2008
  • 지난 10여년 동안 Sn-3.0Ag-0.5(wt%)Cu 합금은 대표 무연솔더 조성으로 다양한 전자제품의 실장 및 접합에 적용되어 왔으며, 그 신뢰성 역시 충분히 검증된 바 있다. 그러나 최근 Ag 가격의 급격한 상승과 솔더 접합부의 내 충격 신뢰성을 보다 향상시키고자 하는 업계의 동향은 Ag의 함량이 낮은 무연솔더 조성의 적용 확대를 유도하고 있다. 이에 따라 본 연구자들은 저 Ag 함유 무연슬더로 Sn-1.2Ag-0.5Cu-0.4In 조성을 제안한 바 있는데, 이는 Sn-3.0Ag-0.5Cu 조성 이상의 solderability를 가지면서도 그 금속원료 가격이 약 20% 가량 저렴한 특징을 가진다. 또한 열 싸이클링 (cycling) 테스트를 통한 슬더 조인트의 신뢰성을 평가한 결과, Sn-3.0Ag-0.5Cu에 크게 뒤떨어지지 않는 양호한 특성이 관찰되었다. 따라서 본 연구에서는 열 싸이클링 테스트와 더불어 최근 그 중요성이 지속적으로 커지고 있는 내 충격 신뢰성 평가 시험을 실시하여 개발된 4원계 무연솔더 조성의 기계적 특성을 기존 무연솔더 조성과 비교, 분석해 보았다. 각 솔더 조성은 솔더 볼 형태로 제조되어 CSP(Chip Scale Package) 상에 범핑 (bumping)되었으며, CSP를 PCB(Printed Circuit Board) 상에 실장하는 공정에서도 Sn-3.0Ag-0.5Cu 및 Sn-1.2Ag-0.5Cu-0.4In의 두 종류의 솔더 페이스트가 사용되었다. 본 연구에서의 내 충격 신뢰성 시험에는 자체 제작한 rod drop 시험기를 사용하였는데, 고정된 CSP 실장 board의 후면 부위를 일정한 높이에서 추를 반복적으로 자유 낙하시켜 급격한 충격을 주는 방식으로 실험을 실시하였다. 이 때 추의 무게는 30g, 낙하 높이는 10cm 였으며, 추의 낙하 시 측정된 board 의 휨 변위량은 약 0.7mm로 측정되었다. 사용된 CSP와 PCB 는 모두 daisy chain 방식으로 연결되어 있기 때문에 저항측정기를 사용한 간단한 실시간 저항 측정 방법으로 시험 이력에 따른 파단부의 발생 시점과 대략의 위치를 손쉽게 확인할 수 있었다. 솔더 조인트의 파단 기준 저항값으로 $1000\Omega$을 설정하였으며. 각 조건 당 5 개 이상의 샘플에 대해 평가를 실시한 후 그 평균값을 조사하였다. 시험 결과 제안된 Sn-1.2Ag-0.5Cu-0.4In 조성은 대표적인 저 Ag 함유 조성인 Sn-1.0Ag-0.5Cu에 비해서는 떨어지는 내 충격 신뢰성을 나타내었지만, 우수한 연성에 기인하여 Sn-3.0Ag-0.5Cu 조성에 비해서는 약 2 배 이상 우수한 신뢰성이 관찰되었다. 또한 CSP의 실장 시 Sn-3.0Ag-0.5Cu보다 Sn-1.2Ag-0.5Cu-0.4In 조성 솔더 페이스트를 적용한 경우에서 보다 우수한 내 충격 신뢰성을 나타내어 기본적으로 개발된 Sn-1.2Ag-0.5Cu-0.4In 솔더 페이스트가 Sn-3.0Ag-0.5Cu 조성의 기존 솔더 페이스트 보다 내 충격 신뢰성이 우수함을 검증할 수 있었다. 각 조성의 솔더 조인트를 $150^{\circ}C$ 에서 500시간 aging한 후 실시한 내 충격 신뢰성 평가에서는 모든 조성에서 그 신뢰성이 급감하는 경항을 나타내었으나, Sn-1.2Ag-0.5Cu-0.4In가 Sn-l.0Ag-0.5Cu보다도 그 상대적인 신뢰성이 우수한 것으로 관찰되었다. 이와 같이 aging 후 실시하는 충격시험은 가장 실제적인 상황과 유사한 조건이므로 상기의 실험 결과는 매우 고무적이었으며, 이에 대한 보다 면밀한 분석이 요청되었다. 마지막으로 파면 및 미세조직 관찰을 통하여 각 조성에서의 충격 파단 특성을 비교, 분석해 보았다.

  • PDF

Drop reliability evaluation of Sn-3.0Ag-0.5Cu solder joint with OSP and ENIG surface finishes (OSP.ENIG 표면 처리된 기판과 Sn-3.0Ag-0.5Cu 솔더 접합부의 낙하충격 신뢰성 평가)

  • Ha, Sang-Ok;Ha, Sang-Su;Lee, Jong-Bum;Yoon, Jeong-Won;Park, Jai-Hyun;Chu, Yong-Chul;Lee, Jun-Hee;Kim, Sung-Jin;Jung, Seung-Boo
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.16 no.1
    • /
    • pp.33-38
    • /
    • 2009
  • The use of portable devices has created the need for new reliability criterion of drop impact tests because of the tendency to accidentally drop in the use of these devices. The effects of different PCB surface finishes (organic solderability preservative (OSP) and electroless nickel immersion gold (ENIG)) and high temperature storage (HTS) test on the drop reliability were studied. Various drop test conditions were used to evaluate a drop reliability of assemblies to endure such impact and shock load. In the case of the as-reflowed samples (no HTS test), the SAC/OSP boards exhibited a better drop impact reliability than that of SAC/ENIG. However, the reverse was true if HTS test is performed. In addition, significant decrease of drop reliability was observed for both SAC/ENIG and SAC/OSP assemblies after HTS test. It was also observed that the thickness of intermetallic compound layer do play an important role in the brittle fracture of drop test.

  • PDF