• Title/Summary/Keyword: 낙뢰

Search Result 300, Processing Time 0.021 seconds

Waveform Parameters of the Electric and Magnetic Fields Radiated Form Lightning Return Strokes (낙뢰에 의해 방사된 전계와 자계 파형의 파라미터)

  • Lee, Bok-Hee;Baek, Young-Hwan;Lee, Woo-Chul
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.20 no.5
    • /
    • pp.57-63
    • /
    • 2006
  • This paper deals with the physical properties and statistical analysis of waveform parameters of electric and magnetic folds radiated from lightning return strokes. The lightning electric and magnetic fields were detected by an plate-type electric field sensor and a loop-type magnetic field sensor respectively, and they were recorded by a data acquisition system having a resolution of 12bits, a sampling rate of 10[MS/s] and recording length of 10[ms]. As a result, a little difference between the parameters of electric and magnetic fields for positive and negative polarities was observed. The rise times of electric and magnetic fields were within the range of less than $13[{\mu}s]$ and the average values for positive and negative polarities were $4.1[{\mu}s]\;and\;4.2[{\mu}s]$, respectively. The average values of the zero-to zero crossing times were $65.2[{\mu}s]\;and\;67.0[{\mu}s]$, and the average depths of the dip to opposite polarity were 38.0[%] and 40.3[%], for positive and negative polarities, respectively.

Improvement of Electrical Conductivity of Carbon-Fiber Reinforced Plastics by Nano-particles Coating (나노입자 코팅 탄소섬유 강화 복합재료의 전기전도도 향상)

  • Seo, Seong-Wook;Ha, Min-Seok;Kwon, Oh-Yang;Cho, Heung-Soap
    • Composites Research
    • /
    • v.23 no.6
    • /
    • pp.1-6
    • /
    • 2010
  • The electrical conductivity of carbon-fiber reinforced plastics (CFRP's) has been improved by indium-tin oxide (ITO) nano-particle coating on carbon fibers for the purpose of lightning strike protection of composite fuselage skins. ITO nano-particles were coated on the surface of carbon fibers by spraying the colloidal suspension with 10~40% ITO content. The electrical conductivity of the CFRP has been increased more than three times after ITO coating, comparable to or higher than that of B-787 composite fuselage skins with metal wire-meshes on the outer surface, without sacrificing the tensile property due to the existence of nano-particles at fiber-matrix interface. The damage area by the simulated lightning strike was also verified for different materials and conditions by using ultrasonic C-scan image. As the electrical conductivity of 40% nano-ITO coated sample surpass that of the B-787 sample, the damage area by lightning strike also appeared comparable to that of the materials currently employed for composite fuselage construction.

Improved Electrical Conductivity of CFRP by Conductive Nano-Particles Coating for lightning Strike Protection (낙뢰손상방지를 위한 전도성 나노입자 코팅에 의한 탄소섬유 복합재료의 전기전도도 향상 연구)

  • Ha, Min-Seok;Kwon, Oh-Yang;Choi, Heung-Soap
    • Composites Research
    • /
    • v.23 no.1
    • /
    • pp.31-36
    • /
    • 2010
  • The improvement of electrical conductivity of carbon-fiber reinforced plastics (CFRP) has been investigated by silver nano-particles coating for the purpose of lightning strike protection. Silver nano-particles in colloid were sprayed on the surface of carbon fibers, which were then impregnated by epoxy resin to form a CFRP specimen. Electrical resistance was measured by contact resistance meter which utilize the principles of the AC 4-terminal method. Electrical resistance value was then converted to electrical conductivity. The coated silver nano-particles on the carbon fibers were verified by SEM and EDS. The electrical conductivity was increased by three times of the ordinary CFRP.

Protection Design and Lightning Zone Analysis for Unmanned Aerial Vehicle with Composite Wings (복합재 주익 무인항공기의 낙뢰보호 설계와 피격영역 해석)

  • Hee-chae Woo;Yong-Tae Kim
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.26 no.3
    • /
    • pp.302-312
    • /
    • 2023
  • This paper describes the analysis of lightning strike zoning, the indirect lightning data simulation and the protection design for lightning indirect effects of equipment by lightning strike for unmanned aircraft consisting of composite wings. Through the analysis of lightning strike zoning according to the external shape of unmanned aerial vehicles, the structure areas that should be protected during lightning strike is derived, and the protection requirements of lightning indirect effects for flight critical equipments and equipment that must be operated upon lightning strike was derived. Lightning protection levels according to the location of mounting equipment and surrounding structure materials for each equipment was derived, and the protection design of the unmanned aerial vehicle with composite structures was also proposed from direct effect of lightning. Later, the lightning protection technology will be verified by the ground test of lightning direct and indirect effects.

Acoustic Emission Monitoring of Compression-after-Impact Test of Nano-Particles-Coated CFRP Damaged by Simulated Lightning Strikes (나노입자 코팅 CFRP의 모의 낙뢰 충격손상 후 압축시험에서의 음향방출 거동)

  • Shin, Jae-Ha;Kwon, Oh-Yang;Seo, Seong-Wook
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.31 no.1
    • /
    • pp.62-67
    • /
    • 2011
  • Nanoparticles-coated and impact-damaged carbon-fiber reinforced plastics(CFRP) laminates were tested under compression-after-impact(CAI) mode and the propagation of damage due to compressive loading has been monitored by acoustic emission(AE). The impact damage was induced not by mechanical loading but by a simulated lightning strike. CFRP laminates were made of carbon prepregs prepared by coating of conductive nano-particles directly on the fibers and the coupons were subjected to simulated lightning strikes with a high voltage/current impulse of 10~40 kA within a few microseconds. The effects of nano-particles coating and the degree of damage induced by the simulated lightning strikes on the AE activities were examined, and the relationship between the compressive residual strength and AE behavior has been evaluated in terms of AE event counts and the onset of AE activity with the compressive loading. The degree of impact damage was also measured in terms of damage area by using ultrasonic C-scan images. From the results assessed during the CAI tests of damaged CFRP showed that AE monitoring appeared to be very useful to differentiate the degree of damage hence the mechanical integrity of composite structures damaged by lightning strikes.

Lightning Protection System of Solar Power Generation Device (태양광발전장치의 낙뢰보호 시스템)

  • Yongho Yoon
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.23 no.2
    • /
    • pp.157-162
    • /
    • 2023
  • Among the failures of photovoltaic power generation facilities, failures caused by surges account for 20% of the total failure rate, and energy emissions of tens to hundreds [A] during power generation and electrical damage to inverters and connection boards lead to electrical safety accidents. In particular, in the case of lightning, an abnormal voltage is induced in an electric circuit to destroy insulation, and the current flowing at this time causes a fire and acts as a factor that accelerates the deterioration of parts. Due to this action, the problem of electrical safety of solar power generation devices spreading from outside the city center to the inside of the city center such as houses, apartments, and government offices is emerging. Since lightning strikes cause both field-based and conducted electrical interference, this effect increases with increasing cable length or conductor loops. In addition, surge damages not only solar modules, inverters and monitoring devices, but also building facilities, which can eventually cause operational shutdown due to fire of the photovoltaic power generation system and consequent financial loss. Therefore, in this paper, a lightning protection system for solar power generation devices is studied for the purpose of reducing property damage and human casualties due to the increase in fire and electrical safety accidents caused by lightning strikes in photovoltaic power generation systems.