병원정보시스템의 전세계적인 보급과 데이터웨어하우스의 도입으로 인해서 병원내의 의료데이터가 기하 급수적인 증가추세를 보이고 있다. 환자에 대한 임상적인 특징을 다수 포함하고 있는 의료데이터는 유용한 임상지식의 보고로서 그 가치가 매우 유용하다. 따라서 데이터에 숨겨진 지식을 발견하여 구조화시킴으로써 새로운 지식을 창조하는 데이터마이닝은 임상부분에 적합한 기술이라 말할 수 있다. 본 연구에서는 급성염증을 가진 환자들의 의료데이터를 기반으로 특징을 추출하고, 추출된 특징을 바탕으로 병명을 판단하기 위한 학습을 수행한다. 학습 방법은 클러스터링을 이용한 나이브 베이지안으로 진행한다. 기존의 나이브 베이지안 학습은 대량의 데이터를 처리하는데 효과적이며 성능 또한 우수하지만, 속성별 독립을 가정하기 때문에 의료데이터를 분석에는 잘 사용되지 않는다. 따라서 높은 신뢰도를 구현하기 위해 나이브 베이지안 학습 전에 클러스터링을 선행하여, 기존 데이터에 클러스터링 클래스를 추가한다. 이를 통해 급성염증의 증상을 보이는 환자데이터를 바탕으로 자동적으로 방광염과 결석으로 인한 신장염을 효과적으로 진단해낸다.
인터넷의 급속한 성장과 함께 E-Mail은 대표적인 통신수단의 하나가 되어버렸다. 편리하다는 점을 이용해서 엄청난 양의 스팸메일이 매일같이 쏟아져 오고 , 그 문제점의 심각성에 정보통신부에서 정보통신망 이용촉진 및 정보보호 등에 관한 법률이라는 새로운 법률까지 생겨났다. 본 논문에서는 이 법률에서 요구하는 '광고'라는 문구를 걸러내는 등의 메시지 규칙을 갖는 시스템과 기존의 문서 분류에 널리 쓰이던 나이브 베이지안 분류자(Naive Baesian Classifier)를 결합한 스팸 메일 필터링 시스템(Spam-mail Fitering System)을 제안한다. 제안된 시스템에서는 사용자가 직접 규칙을 작성할 필요없이 학습한 데이터를 갖고 자동으로 스팸메일을 분류할 수가 있다. 들어온 메일은 메시지 규칙 기반 필터가 먼저 적용되고, 메세지 규칙 기반 필터에서 분류되지 않으면 나이브 베이지안 필터에서 분류된다. 실험에서는 제안된 시스템의 성능을 평가하기 위해서 메시지 규칙을 사용한 시스템 및 나이브 베이지만 분류자 시스템과 비교 평가하였다. 또한 임계치를 변경함으로써 제안된 시스템의 성능을 높일 수있도록 하였다.
다중 레이블 분류 문제는 다중 레이블 데이터를 입력받았을 때 연관된 다수의 레이블을 추측하는 문제이다. 본 논문에서는 다중 레이블 분류 문제의 기법 중 하나인 나이브 베이지안 분류기에 레이블 의존성을 계산하여 결과에 반영한 결과 다중 레이블 분류 문제의 성능이 개선됨을 확인하였다.
디지털 TV에서 시멘틱 환경의 유헬스 개인화 서비스 추천은 개인의 신체조건, 질병, 건강상태를 평가해서 이루어져야 한다. 기존의 시멘틱 환경의 유헬스 개인화 추천 방법은 온톨로지에 의존하여 의미 분석으로 추천을 하기 때문에 사용자 만족도가 떨어진다. 이에 본 논문에서는 디지털 TV에서 시멘틱 환경의 유헬스 서비스를 위한 나이브 베이지안 필터링 기반 개인화 서비스 추천 방법을 제안한다. 제안하는 방법은 온톨로지를 이용하여 상황데이터를 추론하여 트렌젝션을 저장 하고, 선호도 정보를 이용한 나이브 베이지안 필터링 기법을 사용하여 온톨로지로부터 생성된 트렌젝션과 사용자 선호도 정보를 이용하여 추론하여 서비스를 제공한다. 나이브 베이지안 필터링 기반으로 추론된 서비스는 기존의 필터링 방법 보다 콘텐츠 추천의 높은 정확도와 재현율을 보인다.
기상 레이더, 인공위성, 라디오존데 등 날씨 예보를 수행하기 위해 많은 종류의 첨단 장비들이 사용되고 있다. 이들 중에서 지상에 설치된 기상 레이더는 넓은 탐지영역, 높은 시간 및 공간 분해능 등과 같은 많은 장점을 가지고 있기 때문에 기상예보 과정에서 필수적인 장비이다. 이러한 기상 레이더 데이터의 내부에는 기상현상 이외에도 여러 가지 외부 요인에 의해 발생하는 비기상현상이 관측되는데, 이는 기상 예보의 정확도를 감소시키는 원인이 된다. 본 논문에서는 기상 레이더 데이터를 이용한 연구를 통하여 비기상현상이 레이더에 관측되어 에코 형태로 나타난 것들 중에서 선 모양으로 발생하는 비기상에코를 제거하는 방법을 제안한다. 원시 레이더 데이터에서 선에코를 구분하여 그 특성을 추출한 후, 이들을 바탕으로 데이터 페어를 구성하여 나이브 베이지안 분류기를 학습시켰다. 그리고 학습된 나이브 베이지안 분류기를 선에코와 기상에 코가 혼재된 사례에 적용하였다. 실제 사례를 바탕으로 한 실험을 통해서 제안한 나이브 베이지안 분류기가 효과적으로 선에코를 식별할 수 있음을 확인하였다.
본 논문에서는 가중치가 부여된 나이브 베이지안 분류자와 스팸 메일의 특성을 이용한 주소 유효성 검사를 결합하여 필터링하는 방식의 스팸 메일 필터링 시스템을 제안하였다. 주소 유효성 검사를 통해 스팸 메일을 효율적으로 필터링 할 수 있으며, 나이브 베이지안 분류자에 가중치를 부여함으로써 더욱 효과적인 분류를 할 수 있다. 또한, 각 요인의 중요도에 따라 다른 비중을 부여함으로써 메일의 특성을 고려한 필터링 환경을 구현하였다. 실험에서는 제안하는 요인들이 실제로 필터링 성능 향상에 어떤 영향을 미치는지 살펴보고 최적의 시스템 성능을 측정하였다.
빠른 웹의 성장으로 대용량 데이터를 효과적으로 처리할 수 있는 플랫폼 기술에 대한 관심이 높아지고 있다. 특히, HDFS는 이상적인 분산 파일 시스템으로 각광받고 있으며 대용량 파일의 처리를 목적으로 개발되었다. 하지만, 실제 파일들의 집합에서 소용량 파일이 차지하는 비중은 높은 편이다. 많은 수의 소용량 파일은 HDFS 성능 감소에 치명적인 원인이 된다. 많은 수의 소용량 파일들이 HDFS에 저장된다면 NameNode의 메모리 소비량이 증가하게 되며 많은 수의 소용량 파일은 많은 수의 DataNode와 NameNode를 요구하므로 상대적으로 처리시간이 많이 소모된다. 따라서 본 논문에서는 HDFS에서 소용량 파일의 저장과 액세스 효율성을 향상시키기 위하여 나이브 베이지안 분류기 알고리즘을 적용한 파일 그룹화 시스템을 설계하였다.
최근 전자 상거래에서 사용하고 있는 게시판은 고객의 능동적인 참여로 운영되며, 게시물은 고객의 직접적인 의사를 들을 수 있는 인 바운드(Inbound)정보로서 다른 eCRM을 위한 고객 접점 채널 과는 성격이 다른 도구이다. 또한 게시판의 효과적인 운영은 게시판 자체의 신뢰도를 향상 시키고 나아가 전자 상거래 전체의 신뢰도를 높여 줄 수 있는 중요한 eCRM 도구이다. 그러나 현재 대부분의 전자상거래에서 운영하는 게시판은 기 분류된 카테고리를 고객이 직접 수동으로 선정하도록 되어 있고, 이렇게 임의로 분류되는 게시물에 대하여 체계적인 처리 과정 없이 답변이 이루어지기 때문에 답변을 하는데 많은 시간이 소요 되고 있으며, 정확한 답변이 이루어지지 않고 있는 실정이다. 따라서, 본 논문에서는 여러 가지 종류의 게시물에 대하여 나이브 베이지안 분류기를 이용하여 게시판의 기존 문제점의 해결과 효과적인 운영 그리고 게시물의 체계적인 분류 관리를 할 수 있는 게시물 자동 분류기를 설계하고 구현하였다. 아울러 문서 분류 학습 기법 중 대표적인 TFIDF. k-NN, 나이브 베이지안 기법들의 게시물 분류 성능을 측정하여 채택한 나이브 베이지안 분류기의 우수성을 확인 하였다.
판소리는 이야기를 노래로 부르는 우리나라의 전통음악 형식 중 하나로 두 가지 유파(동편제, 서편제)로 나누어진다. 판소리에 대한 지식이 없는 사람은 판소리를 듣고서 이 두 가지 유파를 구별해내기 어렵다. 본 논문에서는 PCD(Pitch Class Distribution)와 나이브 베이지안 분류기를 이용한 판소리 분류 프로그램 구현 과정을 기술한다. 분류기에 사용되는 속성값으로는 각 음계의 출현빈도를 이용하였다. 실험은 확률값을 반올림한 위치를 다르게 하여 두 번 실행하였으며, 그 중 보다 뛰어난 결과로 동편제를 80%, 서편제를 97%, 총 88%의 정확도로 올바르게 분류해 내는 것을 알 수 있었다. 구현한 프로그램에는 이 결과를 적용하였다.
오늘날 한국에서는 급성 심근경색증으로 인한 사망률이 높은 상태로, 발병 시에 치료까지 신속한 의사결정이 요구되는 위중한 질병이기 때문에, 한국인에게 맞는 급성 심근경색증 연구가 매우 중요 하다. 본 연구는 한국인 급성 심근경색증 등록 데이터를 이용해 기계 학습 방법의 한 종류인 나이브 베이지안 방법을 이용해 급성 심근경색증 환자의 예후를 예측하고자, 의료 데이터의 특성에 따른 데이터 변환 방법을 제안한다. 타겟 클래스에서 보다 중요한 의미를 가진 death 값에 대해 각 값을, nominal value, numeric value, 결측치로 구분한 방식에 따라, 확률을 계산해 변환한다. 실험 결과를 통해 결측치를 피처마다 존재하는 값들의 평균을 낸 값으로 대입하였을 때 가장 좋은 성능임을 알 수 있었는데, 기존의 방법에 비해 precision=5.4%, recall=7.0%의 성능이 향상되었다. 따라서 제안한 방법은 나이브 베이지안 방법의 예측 성능 향상에 기여하였다고 판단된다. 이후 적용했던 데이터 변환 방법을 여러 가지 기계 학습 방법에서 판단해보고, 다른 타겟 클래스에도 시험해보고자 한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.