• Title/Summary/Keyword: 나방

Search Result 1,168, Processing Time 0.022 seconds

A New Vegetable Soybean Cultivar, "Nokwon" with Large Seed and Lodging Resistance (풋콩용 내도복 대립 다수성 신품종 "녹원")

  • Ko, Jong-Min;Baek, In-Youl;Han, Won-Young;Kang, Sung-Taek;Kim, Hyun-Tae;Kang, Nam-Suk;Shin, Doo-Chull;Choung, Myoung-Gun;Oh, Sea-Kwan;Oh, Ki-Won;Shin, Sang-Ouk;Park, Keum-Yong;Suh, Duck-Yong;Yun, Hong-Tae;Oh, Young-Jin;Lee, Young-Soo;Son, Chang-Ki;Kim, Yong-Deuk
    • Korean Journal of Breeding Science
    • /
    • v.40 no.3
    • /
    • pp.318-323
    • /
    • 2008
  • Nokwon, a new cultivar for vegetable soybean, was developed from the cross between Keunolkong and Hyangnam-1 and released in 2006. The pedigree of Nokwon, designated as Milyang 153 in 2003, was SS96425-2B-11-4-1-1-1. Nokwon, used as a vegetable soybean was characterized by dark green pod, large seed, very short plant height, and lodging resistance. Nokwon has determinate growth habit, white flowers, gray pubescence, oval leaf shape and brown pods at maturity. The mature seeds have a greenish yellow seed coat with brown hilum and yellow cotyledon. In Korea, Regional Yield Trials (RYT) for vegetable soybean from 2004 to 2006, Nokwon shows strong tolerance to soybean mosaic virus and lodging in fields. Fresh pods of Nokwon harvested at the beginning of August, and stem height was 11cm shorter than 45 cm of Hwaeomputkong. In the same tests, fresh pod of Nokwon (11.4 ton/ha) yielded 14% higher than Hwaeomputkong (10.0 ton/ha). Nokwon had 5.9 cm fresh pod length, 13.1 mm fresh pod width, 75.4 g seed weight per 100 green seed, 39.4% green seed protein content, and 17.3% green seed oil content.

A New Vegetable Soybean Cultivar, 'Sangwon' with Early Maturity and High Yield (풋콩용 조숙 다수성 신품종 '상원')

  • Ko, Jong-Min;Baek, In-Youl;Han, Won-Young;Kim, Hyun-Tae;Oh, Ki-Won;Shin, Sang-Ouk;Park, Keum-Yong;Ha, Tae-Jung;Shin, Doo-Chull;Chung, Myung-Geun;Kang, Sung-Taek;Yun, Hong-Tae;Oh, Young-Jin;Lee, Jong-Hyung;Son, Chang-Ki;Kim, Yong-Deuk
    • Korean Journal of Breeding Science
    • /
    • v.42 no.6
    • /
    • pp.684-689
    • /
    • 2010
  • 'Sangwon', a new cultivar for vegetable soybean, was developed from the cross between 'Keunolkong' and 'Oshimamidori', and was released at the National Institute of Crop Science (NICS) in 2007. The goal to develop a vegetable soybean cultivar with green pod, early maturity, large seed size, high yield, lodging tolerance, and resistance to disease such as soybean mosaic virus (SMV). 'Sangwon' has light green pod, early maturity, large seed, short plant height, and lodging tolerance. 'Sangwon' has determinate growth habit, white flower, gray pubescence, and oval leaf shape. The matured seeds have a yellow seed coat with light brown hilum, and a yellow cotyledon. 'Sangwon' has 5.8 cm fresh pod length, 13.2mm fresh pod width, 69.5 g seed weight per 100 green seeds, 44.0% green seed protein content, and 14.8% green seed oil content. At the regional yield trials (RYT) for vegetable soybean from 2005 to 2007, 'Sangwon' shows strong resistance to soybean mosaic virus (SMV) and tolerance to lodging in fields. Fresh pods of 'Sangwon' were harvested at the beginning of August. In the same tests, fresh pod of 'Sangwon' (10.39ton/ha) yielded 5% higher than 'Hwaeomputkong' (9.90ton/ha).

A Bicolor Waxy Corn Hybrid with High Eating Quality, 'Eolrukchal 1' (고품질 얼룩찰옥수수 신품종 '얼룩찰1호')

  • Lee, Jin-seok;Jung, Tae-wook;Song, Song-yi;Son, Beom-young;Kim, Jung-tae;Kim, Sung-kook;Kim, Sun-lim;Baek, Seong-bum;Seo, Jong-ho;Lee, Jae-eun;Kim, Si-ju;Kwon, Young-up;Kim, Wook-han;Park, Ki-jin;Shin, Hyeon-man;Huh, Chang-suk;Kang, Dal-soon
    • Korean Journal of Breeding Science
    • /
    • v.43 no.6
    • /
    • pp.554-558
    • /
    • 2011
  • A single cross hybrid, 'Eolrukchal 1', is a bicolor waxy corn (Zea mays L.) developed by the maize breeding team at the National Institute of Crop Science (NICS), RDA in 2007. This hybrid, which has a high eating quality, was produced by crossing two inbred lines, KBW23 and KW33. KBW23 was a seed parent and KW33 was a the pollen parent of 'Eolrukchal 1'. Ear length and diameter of 'Eolrukchal 1' is 18.4 cm and 4.5 cm, respectively. The ratio of kernel set length/ear length is 89%, similar with that of a check hybrid, 'Chalok 1'. It is resistant to Exserohilum turcicum (Northern corn leaf blight) and its lodging resistance is higher than that of 'Chalok 1'. The yield of 'Eolrukchal 1' in fresh ear weight was 9.80 ton/ha and 14% higher than that of 'Chalok 1' in regional yield trials (RYT) from 2005 to 2007. A seed production of this hybrid has been well due to good match during crossing between the seed and the pollen parents. It is adaptable to the whole country except Jeju-do.

'Chamol', an Early Maturing, High Yield, and Large-seed Soybean Cultivar for Double Cropping (이모작 적응 조숙 대립 다수성 콩 품종 '참올')

  • Ko, Jong Min;Kim, Hyun Tae;Han, Won Young;Baek, In Youl;Yun, Hong Tae;Lee, Young Hoon;Lee, Byong Won;Jeong, Chan Sik;Ha, Tae Joung;Shin, Sang Ouk;Park, Chang Hwan;Kim, Hong Sik;Seo, Jeong Hyun;Kang, Beom Kyu;Seo, Min Jeong;Choi, Kyu Hwan;Shin, Jeong Ho;Kwak, Do Yeon
    • Korean Journal of Breeding Science
    • /
    • v.50 no.4
    • /
    • pp.478-484
    • /
    • 2018
  • A soybean cultivar "Chamol" for double cropping for use as soy-paste and tofu was developed using a pedigree method in 2011 as a cross between "Shinpaldal2" and "Keunol." A promising line, SS99502-2B-89-1-3-4-1-1, was selected and designated as "Milyang210". It was promising and showed good results from regional yield trials (RYTs) for 3 years from 2009 to 2011 and released with the name "Chamol." It has a determinate growth habit, white flowers, gray pubescence, yellow seed coat, yellow hilum, spherical seed shape, and large seeds (27.7 g per 100 seeds). The maturity date of "Chamol" was September 18 (100 day growing period) in RYT and it is suitable for double cropping with winter crops such as onion. "Chamol" was resistant to bacterial pustule and soybean mosaic virus and tolerant to lodging in fields. Furthermore, the average yield of "Chamol" was 2.51 ton/ha in the regional yield trials conducted for 3 years from 2009 to 2011.

Construction of Genetic Linkage Map and Identification of Quantitative Trait Loci in Populus davidiana using Genotyping-by-sequencing (Genotyping-by-sequencing 기법을 이용한 사시나무(Populus davidiana) 유전연관지도 작성 및 양적형질 유전자좌 탐색)

  • Suvi Kim;Yang-gil Kim;Dayoung Lee;Hye-jin Lee;Kyu-Suk Kang
    • Journal of Korean Society of Forest Science
    • /
    • v.112 no.1
    • /
    • pp.40-56
    • /
    • 2023
  • Tree species within the Populus genus grow rapidly and have an excellent capacity to absorb carbon, conferring substantial ability to effective purify the environment. Poplar breeding can be achieved rapidly and efficiently if a genetic linkage map is constructed and quantitative trait loci (QTLs) are identified. Here, a high-density genetic linkage map was constructed for the control pollinated progeny using the genotyping-by-sequencing (GBS) technique, which is a next-generation sequencing method. A search was also performed for the genes associated with quantitative traits located in the genetic linkage map by examining the variables of height and diameter at root collar, and resilience to insect damage. The height and diameter at root collar were measured directly, while the ability to recover from insect damage was scored in a 4-year-old breeding population of aspen hybrids (Odae19 × Bonghyeon4 F1) established in the research forest of Seoul National University. After DNA extraction, paternity was confirmed using five microsatellite markers, and only the individuals for which paternity was confirmed were used for the analysis. The DNA was cut using restriction enzymes and the obtained DNA fragments were prepared using a GBS library and sequenced. The analyzed results were sorted using Populus trichocarpa as a reference genome. Overall, 58,040 aligned single-nucleotide polymorphism (SNP) markers were identified, 17,755 of which were used for mapping genetic linkages. The genetic linkage map was divided into 19 linkage groups, with a total length of 2,129.54 cM. The analysis failed to identify any growth-related QTLs, but a gene assumed to be related to recovery from insect damage was identified on linkage group (chromosome) 4 through genome-wide association study.

Simultaneous Production System of Silkworm Dongchunghacho and Male Pupae Using Both Parent Sex-limited Larval Marking Variety (한성반문잠품종을 이용한 누에동충하초 및 숫번데기의 동시 생산체계)

  • Ji, Sang-Duk;Kim, Nam-Suk;Kang, Pil-Don;Sung, Gyoo-Byung;Hong, In-Pyo;Ryu, Kang Sun;Kim, Young-Ki;Nam, Sung-Hee;Kim, Mi-Ja;Kim, Kee-Young
    • Journal of Sericultural and Entomological Science
    • /
    • v.50 no.2
    • /
    • pp.101-108
    • /
    • 2012
  • This study was conducted to confirm the mass production of male pupae and sex-limited larval marking variety as a host for synnemata production of Isaria tenupes in RDA(Rural Development Administration). Silkworm pupation, infection rate and synnemate formation of I.tenuipes were examined. Among the silkworm varieties tested, male Hansaengjam showed the highest pupation rate at 98.7%. I. tenuipes infection rate of larvae of newly-exuviated 5th instar silkworm was 83.7 ~ 90.4% in the spring rearing season and 91.7 ~ 96.6% in the autumn rearing season. Synnemata production of I. tenuipes was execellent in female Yangwonjam with an incidence rate of 99.5% followed by male Yangwonjam(99.5%) and Baegokjam(99.4%) in the spring and autumn rearing season. Synnemata living weight ranged from 0.93 ~ 1.25 g in the spring rearing season. The female Hansaengjam had the heaviest synnemata weight(1.25 g). Synnemata dry weight ranged from 0.27 ~ 0.35 g in the spring rearing season. The female Yangwonjam had the heaviest synnemata weight(0.35 g).

Development of a Simultaneous Analytical Method for Determination of Insecticide Broflanilide and Its Metabolite Residues in Agricultural Products Using LC-MS/MS (LC-MS/MS를 이용한 농산물 중 살충제 Broflanilide 및 대사물질 동시시험법 개발)

  • Park, Ji-Su;Do, Jung-Ah;Lee, Han Sol;Park, Shin-min;Cho, Sung Min;Kim, Ji-Young;Shin, Hye-Sun;Jang, Dong Eun;Jung, Yong-hyun;Lee, Kangbong
    • Journal of Food Hygiene and Safety
    • /
    • v.34 no.2
    • /
    • pp.124-134
    • /
    • 2019
  • An analytical method was developed for the determination of broflanilide and its metabolites in agricultural products. Sample preparation was conducted using the QuEChERS (Quick, Easy, Cheap, Effective, Rugged and Safe) method and LC-MS/MS (liquid chromatograph-tandem mass spectrometer). The analytes were extracted with acetonitrile and cleaned up using d-SPE (dispersive solid phase extraction) sorbents such as anhydrous magnesium sulfate, primary secondary amine (PSA) and octadecyl ($C_{18}$). The limit of detection (LOD) and quantification (LOQ) were 0.004 and 0.01 mg/kg, respectively. The recovery results for broflanilide, DM-8007 and S(PFP-OH)-8007 ranged between 90.7 to 113.7%, 88.2 to 109.7% and 79.8 to 97.8% at different concentration levels (LOQ, 10LOQ, 50LOQ) with relative standard deviation (RSD) less than 8.8%. The inter-laboratory study recovery results for broflanilide and DM-8007 and S (PFP-OH)-8007 ranged between 86.3 to 109.1%, 87.8 to 109.7% and 78.8 to 102.1%, and RSD values were also below 21%. All values were consistent with the criteria ranges requested in the Codex guidelines (CAC/GL 40-1993, 2003) and the Food and Drug Safety Evaluation guidelines (2016). Therefore, the proposed analytical method was accurate, effective and sensitive for broflanilide determination in agricultural commodities.

Lodging-Tolerant, High Yield, Mechanized-Harvest Adaptable and Small Seed Soybean Cultivar 'Aram' for Soy-sprout (내도복 다수성 기계수확 적응 소립 나물용 콩 '아람')

  • Kang, Beom Kyu;Kim, Hyun Tae;Ko, Jong Min;Yun, Hong Tai;Lee, Young Hoon;Seo, Jeong Hyun;Jung, Chan Sik;Shin, Sang Ouk;Oh, Eun Yeong;Kim, Hong Sik;Oh, In Seok;Baek, In Youl;Oh, Jae Hyun;Seo, Min Jeong;Yang, Woo Sam;Kim, Dong Kwan;Gwak, Do Yeon
    • Korean Journal of Breeding Science
    • /
    • v.51 no.3
    • /
    • pp.214-221
    • /
    • 2019
  • 'Aram' is a soybean cultivar developed for soy-sprout. It was developed from the crossing of 'Bosug' (Glycine max IT213209) and 'Camp' (G. max IT267356) cultivars in 2007. F1 plants and F2 population were developed in 2009 and 2010. A promising line was selected in the F5 generation in 2011 using the pedigree method and it was evaluated for agronomic traits, yield, and soy-sprouts characteristics in a preliminary yield trial (PYT) in 2012 and an advanced yield trial (AYT) in 2013. Agronomic traits and yield were stable between 2014 and 2016 in the regional yield trial (RYT) in four regions (Suwon, Naju, Dalseong, and Jeju). Morphological characteristics of 'Aram' are as follows: determinate plant type, purple flowers, grey pubescence, yellow pods, and small, yellow, and spherical seeds (9.9 g 100-seeds-1) with a light brown hilum. The flowering date was the 5th of August and the maturity date was the 15th of October. Plant height, first pod height, number of nods, number of branches, and number of pods were 65 cm, 13 cm, 16, 4.5, and 99, respectively. In the sprout test, germination rate and sprout characteristics of 'Aram' were comparable to that of the 'Pungsannamulkong' cultivar. The yield of 'Aram' was 3.59 ton ha-1 and it was 12% higher than that of 'Pungsannamulkong' in southern area of Korea. The yield of 'Aram' in the Jeju region, which is the main region for soybean sprout production, was 20% higher than that of 'Pungsannamulkong'. The height of the first pod and the tolerance to lodging and pod shattering, which are connected to the adaptation to mechanized harvesting, were higher in 'Aram' compared to those in 'Pungsannamulkong'. Therefore, the 'Aram' cultivar is expected to be broadly cultivated because of its higher soybean sprout quality, and seed yield and better adaptation to mechanized harvesting. (Registration number: 7718)