• Title/Summary/Keyword: 나무모형

Search Result 343, Processing Time 0.024 seconds

Development of a convergence inpatient medical service patient experience management model using data mining (데이터마이닝을 이용한 융복합 입원 의료서비스 환자경험 관리모형 개발)

  • Yoo, Jin-Yeong
    • Journal of Digital Convergence
    • /
    • v.18 no.6
    • /
    • pp.401-409
    • /
    • 2020
  • The purpose of this study is to develop a convergence inpatient medical service patient experience management model(IMSPEMM) that can help in the management strategy of a medical institution to create a patient-centered medical culture. Using the original data from the 2018 Medical Service Experience Survey, 593 people with medical services inpatient(MSI) over the age of 15 were analyzed. By using the decision tree model, we developed a prediction model for overall satisfaction(OS) with the inpatient medical service experience(IMSE) and the intention to recommend patient experience(RI), and were classified into 4 and 7 types. The accuracy of the model was 68.9% and 78.3%. The OS level of IMSE was the nurse area and the hospital room noise management area, and the RI decision factor was the nurse area. It is significant that the IMSPEMM for MSI was presented and confirmed that the nurse area and the noise management area of the hospital room are important factors for the inpatient experience. It is considered that further research is needed to generalize the IMSPEMM.

A Study for the Development of a Bid Price Rate Prediction Model (낙찰률 예측 모형에 관한 연구)

  • Choi, Bo-Seung;Kang, Hyun-Cheol;Han, Sang-Tae
    • Communications for Statistical Applications and Methods
    • /
    • v.18 no.1
    • /
    • pp.23-34
    • /
    • 2011
  • Property auctions have become a new method for real estate investment because the property auction market grows in tandem with the growth of the real estate market. This study focused on the statistical model for predicting bid price rates which is the main index for participants in the real estate auction market. For estimating the monthly bid price rate, we proposed a new method to make up for the mean of regions and terms as well as to reduce the prediction error using a decision tree analysis. We also proposed a linear regression model to predict a bid price rate for individual auction property. We applied the proposed model to apartment auction property and tried to predict the bid price rate as well as categorize individual auction property into an auction grade.

Development of the Fraud Detection Model for Injury in National Health Insurance using Data Mining -Focusing on Injury Claims of Self-employed Insured of National Health Insurance (데이터마이닝을 이용한 건강보험 상해요인 조사 대상 선정 모형 개발 -건강보험 지역가입자 상해상병 진료건을 중심으로-)

  • Park, Il-Su;Park, So-Jeong;Han, Jun-Tae;Kang, Sung-Hong
    • Journal of Digital Convergence
    • /
    • v.11 no.10
    • /
    • pp.593-608
    • /
    • 2013
  • According to increasing number of injury claims, the challenge is reducing investigation of cases of injuries by selecting them more delicately, while also increasing the redemption rates and the amount of restitution. In this regards, we developed the fraud detection model for injury claims of self-employed insured by using decision tree after collecting medical claim data from 2006 to 2011 of the National Health Insurance in Korea. As a result of this model, subject types were classified into 18 types. If applying these types to the actual survey compared with if not applying, the redumption collecting rate will be increasing by 12.8%. Also, the effectiveness of this model will be maximize when the number of claims handlers considering their survey volume and management plans are examined thoroughly.

Improving the Performance of Supervised Learning Models using Error Pattern Modeling (오차패턴 모델링을 이용한 지도학습 모형에서의 성능 향상)

  • Heo, Jun;Kim, Jong-U
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 2005.05a
    • /
    • pp.280-286
    • /
    • 2005
  • 본 논문은 이분형 목적변수를 가지는 데이터에서, 의사결정나무나 신경망과 같은 지도 학습(Supervised Learning)의 훈련을 통한 각종 예측 및 분류 정확도를 향상시키기 위해서 오차 패턴을 이용한 새로운 Hybrid 데이터 마이닝 기법을 제안한다. 오차 패턴을 이용한 Hybrid 기법이란 데이터 마이닝의 서로 다른 기법을 각 데이터에 적용한 다음 기법간의 불일치되는 부분만을 다시 패턴화 하여, 이를 최종 모형에 적용하여, 기존에 1개의 방법만을 사용하였을 경우보다, 더욱 좋은 정확도를 가질 수 있도록 하는 방법이다. 본 기법의 검증을 위하여, 10개의 실제 검증용 자료를 사용하였으며, 분석 결과 신경망과 의사결정나무 분석과 같은 기존의 방법보다 전체적으로 예측력이 향상됨을 보였다.

  • PDF

층화에서 최적경계점 결정에 관한 연구

  • Park, Jin-U;Kim, Yeong-Won
    • Proceedings of the Korean Statistical Society Conference
    • /
    • 2002.11a
    • /
    • pp.179-184
    • /
    • 2002
  • 층화 추출법에서 층의 경계점을 정하는 문제는 추정의 효율에 직접적으로 영향을 미치기 때문에 매우 실제적이고 중요한 문제이다. 층화변수가 일변량 연속변수인 경우 널리 알려진 방법으로는 누적도수제곱근법과 Ekman법이 있는데 이 두 방법은 모두 나름의 약점을 지니고 있다. 본 논문에서는 Breiman 등(1984)이 제시한 CART 기법 중 회귀나무(regression tree)모형을 이용하여 층의 경계점을 정하는 방법을 소개한다. 그리고 통계청의 어업총조사 자료를 사용하여 층의 경계점을 정하는 여러 다른 방법들의 효율을 비교한다.

  • PDF

An Study on Decision Tree Analysis with Imbalanced Data Set : A Case of Health Insurance Bill Audit in General Hospital (의사결정나무 분석에서 불균형 자료의 분석 연구 : 종합병원의 건강보험료 청구 심사 사례)

  • Heo Jun;Kim Jong-U
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 2006.05a
    • /
    • pp.1667-1676
    • /
    • 2006
  • 다른 산업과 달리 병원/의료 산업에서는 건강 보험료 심사 평가라는 독특한 검증 과정이 필수적으로 있게 된다. 건강 보험료 심사 평가는 병원의 수익 문제 뿐 아니라 적정한 진료행위를 하는 병원이라는 이미지와도 맞물려 매우 중요한 분야이며, 특히 대형 종합병원일수록 이 부분에 많은 심사관련 인력들을 투입하여, 병원의 수익과 명예를 위해서 업무를 수행하고 있다. 본 논문은 이러한 건강보험료 청구 심사 과정에서, 사전에 수많은 진료 청구 건 중 심사 평가에서 삭감이 될 수 있는 진료 청구 건을 데이터 마이닝을 통해서 발견하여, 사전의 대비를 철저히 하고자 하는 한 국내의 대형 종합병원의 사례를 소개하고자 한다. 데이터 마이닝을 적용함에 있어, 주요한 문제점 중의 하나는 바로 지도학습 기법을 적용하기에 곤란한 데이터 불균형 문제가 발생하는 것이다. 이런 불균형 문제를 해소하고, 비교 조건 중에 가장 효율적인 삭감 예상 진료 건 탐지 모형을 만들어 내기 위하여 데이터 불균형 문제의 기본 해법인 과, Sampling 오분류 비용의 다양하고 혼합적인 적용을 통하여, 적합한 조건을 가지는 의사결정 나무 모형을 도출하였다.

  • PDF

데이터마이닝 기법을 활용한 스팸메일 분류 및 예측모형 구축에 관한 연구

  • 안수산;신경식
    • Proceedings of the Korea Inteligent Information System Society Conference
    • /
    • 2000.11a
    • /
    • pp.359-366
    • /
    • 2000
  • 기업의 환경에서 이-메일(e-mail)은 회사내의 업무흐름을 완전히 뒤바꾸며 혁명적인 변화를 이끌고 있다. 업무 공간의 극복, 사내 커뮤니케이션의 극대화 등 이-메일이 제공하는 장점이 매우 많다. 그러나 최근 사회적 문제가 되고 있는 스팸 메일(spam mail)의 등장은 이러한 장점의 커다란 반대급부를 제공한다. 스팸메일이란 인터넷이용자들에게 원하지도 않았는데 무작위로 발송되는 광고성 이-메일을 일컫는 말로, 벌크(bulk)메일, 정크(junk)메일, 언솔리시티드(Unsolicited)메일과도 유사한 의미로 사용된다. 스팸메일은 사용자들로 하여금 스트레쓰의 요인이 되게 함은 물론, 이를 발신하고 수신하는 과정에서 이용되는 서버에 엄청난 부하를 줄 뿐만 아니라, 공공의 성격을 지니는 네트웍 자원을 아무런 비용의 지불 없이 독점하게 되는 좋지 않은 결과를 가져오게 된다. 본 연구에서는 데이터마이닝의 기법 중 분류(classification tack) 문제에 적웅이 활발한 인공신경망 (artificial neural networks)과 의사결정나무(decision tree)기법을 이용하여 스팸메일의 분류와 예측을 가능케 하는 모형을 구축한다.

  • PDF

Restoration Model of Evergreen Broad-leaved Forests in Warm Temperate Region(IV) - Vegetation Structure of the Case Study Areas - (난대 기후대의 상록활엽수림 복원 모형(IV) - 사례지의 식생구조 -)

  • 오구균;김용식
    • Korean Journal of Environment and Ecology
    • /
    • v.11 no.3
    • /
    • pp.334-351
    • /
    • 1997
  • To study restoration model of evergreen broad-leaved forests in warm temperate region, vegetation structure was studied at Wando(Island) as a case study. Quercus acuta was a dominant species at evergreen broad-leaved forests in Wando(Island). Majority of evergreen broad-leaved forests was a thirty years old coppice forest. Reforested vegetation and deciduous broad-leaved forests was developed at a mid-slope districts and a piedmont. Deciduous broad-leaved forestsconsisted of Quercus serrata, Carpinus tschonoskii, Carpinus coreana, etc., was developed at a ridge and higher districts. Evergreen broad-leaved woody plants were growing at a forest floor of deciduous broad-leaved forests. The species over sixty percent of constanty ratio in forty seven plots were Ligustrum japonicum, Trachelospermum asiaticum var. intermedium, Quercus acuta and Eury japonica. The vascular plants in the Wando(Island) was summarized as 488 taxa which composed as 101 families, 321 genus, 426 species, 56 varieties, 5 forms and 1 hyvrid. Evergreen broad-leaved woody stecies was 32 taxa which composed as 23 genus, 30 species and 2 varieties. The species such as Liliope platyphylla of Liliaceae and Pueraria thunbergii of Leguminosae, etc. was recorded as the highest values for their widely distribution in the areas. On the contrary, and forty taxa of plants such as Viburnum erosum of Caprifoliaceae, Traceholospermum asiaticum var. intermedium was recorded as over 50% of constancy ratio. Two hundred and nine taxa of plants such as Juglans manshurica of Juglandaceae, Cornus walteri of Cornaceae and Rodotypos scandens of Rosaceae, etc. was showed the specific trends due to long-term artificial disturbance. The forest of Pinus thunbergii showde the highest species diversities(155 species per 600m$^{2}$), while the Cinnamomum japonicum-Tracheolospermum asiaticum var. intermedium community showed the lowest species diversities(23 species per 600m$^{2}$).

  • PDF

A Recommending System for Care Plan(Res-CP) in Long-Term Care Insurance System (데이터마이닝 기법을 활용한 노인장기요양급여 권고모형 개발)

  • Han, Eun-Jeong;Lee, Jung-Suk;Kim, Dong-Geon;Ka, Im-Ok
    • The Korean Journal of Applied Statistics
    • /
    • v.22 no.6
    • /
    • pp.1229-1237
    • /
    • 2009
  • In the long-term care insurance(LTCI) system, the question of how to provide the most appropriate care has become a major issue for the elderly, their family, and for policy makers. To help beneficiaries use LTC services appropriately to their needs of care, National Health Insurance Corporation(NHIC) provide them with the individualized care plan, named the Long-term Care User Guide. It includes recommendations for beneficiaries' most appropriate type of care. The purpose of this study is to develop a recommending system for care plan(Res-CP) in LTCI system. We used data set for Long-term Care User Guide in the 3rd long-term care insurance pilot programs. To develop the model, we tested four models, including a decision-tree model in data-mining, a logistic regression model, and a boosting and boosting techniques in an ensemble model. A decision-tree model was selected to describe the Res-CP, because it may be easy to explain the algorithm of Res-CP to the working groups. Res-CP might be useful in an evidence-based care planning in LTCI system and may contribute to support use of LTC services efficiently.

A Decision-support System for Care Plan in Long-term Care Insurance (의사결정나무기법을 활용한 노인장기요양보험 표준급여모형 개발)

  • Han, Eun-Jeong;Lee, Jung-Suk;Kim, Dong-Geon;Kwon, Jinhee
    • The Korean Journal of Applied Statistics
    • /
    • v.27 no.5
    • /
    • pp.667-679
    • /
    • 2014
  • National Health Insurance Service(NHIS) provide care-plans for beneficiaries in the long-term care insurance(LTCI) systems that help them use LTC services appropriately. The care-plan includes recommendations for the most adequate type of care (gold standard) for beneficiaries. This study develops a decision-support system to determine the appropriate type of care plan. To develop a model, we used a data set that well-trained assessors in the NHIS investigated as a gold standard for beneficiaries: nursing home care, home-visit care, home-visit bathing, home-visit nursing, or day and night care. The decision-support system was established through a decision-tree model, because it may be easy to explain the algorithm of a decision-support system to working groups and policy makers. Our results might be useful in evidence-based care planning in an LTCI system and contribute to the efficient use of LTC services.