• Title/Summary/Keyword: 나노 입자 특성

Search Result 1,236, Processing Time 0.029 seconds

Engineered Clay Minerals for Future Industries: Food Packaging and Environmental Remediation (미래산업에 적용가능한 점토 화합물: 식품포장 및 환경개선)

  • Kim, Hyoung-Jun;Oh, Jae-Min
    • Journal of the Mineralogical Society of Korea
    • /
    • v.29 no.2
    • /
    • pp.35-45
    • /
    • 2016
  • Clays, which are abundant in nature and eco-friendly, have been utilized throughout human history due to their characteristic physicochemical properties. Recently, a variety of clays such as montmorillonite, kaolinite, sepiolite and layered double hydroxide with or without chemical modification have been extensively studied for potential application in industries. Clays that possess a large specific surface area, high aspect ratio, nanometer sized layer thickness and controllable surface charge could be utilized as polymer fillers after appropriate chemical modifications. These modified clays can improve mechanical and gas barrier properties of polymer materials but also provide sustained antibacterial activity to polymer films. Furthermore, engineered clays can be utilized as scavengers for chemical or biological pollutants in water or soil, because they have desirable adsorption properties and chemical specificity. In this review, we are going to introduce recent researches on engineered clays for potential applications in future industries such as food packaging and environmental remediation.

Synthesis and characterization of GaN nanoparticles by pulsed laser deposition (펄스레이저증착법에 의한 GaN 나노입자의 합성 및 특성분석)

  • ;;;Koshizaki Naoto
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.13 no.2
    • /
    • pp.79-82
    • /
    • 2003
  • GaN nanoparticles were synthesized by the pulsed laser deposition (PLD) process on $SiO_2$substrate after irradiating the surface of the GaN sintered pellet by the ArF (193 nm) excimer laser. At this moment Ar gas pressure of 100 Pa, 50 Pa, 10 Pa and 1 Pa were applied during the ablation process and laser power of 100 mJ and 200 mJ were also applied. The synthesized fan nanoparticles were characterized by XRD, SEM, TEM, XPS and optical absorption spectra. The synthesized GaN nanoparticles had the crystallite sizes of 20~30 nm, and besides, GaN nanoparticles synthesized under low Ar gas pressure compared to the others corresponded with stoichiometry, and the optical band edge of the GaN nanoparticles was blueshifted.

Development of Thermoplastic Carbon Composite Bipolar Plates for High-temperature PEM Fuel Cells (고온 양성자 교환막 연료전지용 열가소성 탄소 복합재료 분리판 개발)

  • Lim, Jun Woo;Kim, Minkook;Lee, Dai Gil
    • Composites Research
    • /
    • v.29 no.5
    • /
    • pp.243-248
    • /
    • 2016
  • Although thermoset carbon fiber composite bipolar plates not only have high mechanical properties but also high corrosion resistance in acid environment, high manufacturing cost and low bulk electrical conductivity are the biggest obstacle to overcome. In this research, thermoplastic polymer is employed for the matrix of carbon composite bipolar plate to increase both the manufacturing productivity and bulk electric conductivity of the bipolar plate. In order to increase the electrical conductivity and strength, plain type carbon fabric rather than chopped or unidirectional fibers is used. Also nano particles are embedded in the thermoplastic matrix to increase the bulk resistance of the bipolar plate. The area specific resistance and the mechanical strength of the developed bipolar plate are measured with respect to the environmental temperature and stack compaction pressure.

Optimization of Synthesis Process for Zeolite 4A Using Statistical Experimental Design (통계적 실험계획법을 이용한 제올라이트 4A 합성 최적화)

  • Yun, Mi Hee;Yoo, Kye Sang
    • Applied Chemistry for Engineering
    • /
    • v.28 no.3
    • /
    • pp.286-289
    • /
    • 2017
  • Synthesis of zeolite 4A was carried out to optimize the nanoparticle synthesis process using statistical experimental design method. The zeolite 4A was synthesized by controlling the concentration of the silicon precursor, sodium metasilicate (SMS), and characterized by XRD, SEM and nitrogen adsorption. In particular, the property of zeolite 4A can be determined by XRD analysis. Using the general factor analysis in the design of experiments, we analyzed main effects and interactions according to the reactor, reaction temperature and reaction time. The optimum reaction condition for the synthesis of zeolite 4A crystallinity was using an autoclave for 3 hours at $110^{\circ}C$. Furthermore, the optimal synthesis conditions of zeolite 4A with various crystallinity using Ludox as a silicon precursor were presented of what using both the surface and contour plot.

An Experimental Study on Composition Characteristics of SiO$_2$/TiO$_2$/Multicomponent Particle Generated in a Coflow Diffusion Flame (화염중 발생하는 SiO$_2$/TiO$_2$/다성분입자의 조성특성에 관한 실험적 연구)

  • Kim, Tae-O;Seo, Jeong-Su;Choe, Man-Su
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.9
    • /
    • pp.1175-1182
    • /
    • 2001
  • Chemical compositions of polydisperse SiO$_2$/TiO$_2$multicomponent aggregates were measured for different heights from the burner surface and different mobility diameters of aggregates. SiO$_2$/TiO$_2$multicomponent particles were generated in a hydrogen/oxygen coflow diffusion flame from two sets of precursors: TTIP(titanium tetraisopropoxide), TEOS(tetraethylorthosilicate). To maintain 1:1 mole ratio of TTIP:TEOS vapor, flow rate of carrier gas $N_2$was fixed at 0.6lpm for TTIP, at 0.1lpm for TEOS. In-situ sampling probe was used to supply particles into DMA(differential mobility analyzer) which was calibrated with using commercial DMA(TSI, model 3071A) and classifying monodisperse multicomponent particles. Classified monodisperse particles were collected with electrophoretic collector. The distributions of composition from particles to particle were determined using EDS(energy dispersive spectrometry) coupled with TEM(transmission electron microscope). The chemical(atomic) compositions of classified monodisperse particle were obtained for different heights; z=40mm, 60mm, 80mm. The results suggested that the chemical(atomic) composition of SiO$_2$decreased with the height from burner surface and the composition of SiO$_2$and TiO$_2$approached to the value of 1 to 1 fat downstream. It is also found that the composition of SiO$_2$decreases as the mobility diameter of aggregate increases.

Fabrication and Characterization of Silver-Coated Titanium Dioxide Nanoparticles for a Conductive Paste (은이 코팅된 이산화티탄 나노입자 및 도전성 페이스트 제조 특성)

  • Sim, Sang-Bo;Lee, Mi Chae;Bae, Dong-Sik
    • Korean Journal of Materials Research
    • /
    • v.25 no.12
    • /
    • pp.683-689
    • /
    • 2015
  • In this study, the properties of Ag-coated $TiO_2$ nanoparticles were observed, while varying the molar ratio of water and $Ag^+$ for the surfactant and $TiO_2$. According to the XRD results, each nanoparticle showed a distinctive diffraction pattern. The intensity of the respective peaks and the sizes of the nanoparticles increased in the order of AT1($R_1=5$)(33.3 nm), AT2($R_1=10$)(38.1 nm), AT3($R_1=20$)(45.7 nm), AT4($R_1=40$)(48.6 nm) as well as AT5($R_2=0.2$, $R_3=0.5$)(41.4 nm), AT6($R_2=0.3$, $R_3=1$)(45.1 nm), AT7($R_2=0.5$, $R_3=1.5$)(49.3 nm), AT8($R_2=0.7$, $R_3=2$)(57.2 nm), which values were consistent with the results of the UV-Vis. spectrum. The surface resistance of the conductive pastes fabricated using the prepared Ag-coated $TiO_2$ nanoparticles exhibited a range 7.0~9.0($274{\sim}328{\mu}{\Omega}/cm^2$) times that of pure silver paste(ATP)($52{\mu}{\Omega}/cm^2$).

Recent Progress in Qantum Dots Containing Thin Film Composite Membrane for Water Purification (양자점이 합체된 복합 박막을 이용한 정수의 최근 발전)

  • Park, Shinyoung;Patel, Rajkumar
    • Membrane Journal
    • /
    • v.30 no.5
    • /
    • pp.293-306
    • /
    • 2020
  • Increasing harmful effects of climate change, such as its effect on water scarcity, has led to a focus on developing effective water purification methods to obtain pure water. Additionally, rising levels of water pollution is increasing levels of environmental degradation, calling for sources of water treatment to remove contaminants. To purify water, osmotic processes across a semipermeable membrane can take place, and recent studies are showing that incorporating nanoparticles, including carbon quantum dots (CQDs), graphene carbon dots (GQDs), and graphene oxide quantum dots (GOQDs) are making thin film composite (TFC) membranes more effective by increasing water flux while maintaining similar levels of salt rejection, increasing the hydrophilicity of the membrane surface, showing bactericidal properties, exhibiting antifouling properties to prevent accumulation of bacteria or other microorganisms from reducing the effectiveness of the membrane, and more. In the review, the synthesis process, applications, functionality, properties, and the role of several types of quantum dots are discussed in the composite membrane for water purification.

Study on $TiO_2$ nanoparticle for Photoelectrode in Dye-sensitized Solar Cell (염료감응형 태양전지의 광전극 적용을 위한 $TiO_2$ nanoparticle 특성 분석)

  • Jo, Seulki;Lee, Kyungjoo;Song, Sangwoo;Park, Jaeho;Moon, Byungmoo
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.11a
    • /
    • pp.57.2-57.2
    • /
    • 2011
  • Dye-sensitized solar cells (DSSC) have recently been developed as a cost-effective photovoltaic system due to their low-cost materials and facile processing. The production of DSSC involves chemical and thermal processes but no vacuum is involved. Therefore, DSSC can be fabricated without using expensive equipment. The use of dyes and nanocrystalline $TiO_2$ is one of the most promising approaches to realize both high performance and low cost. The efficiency of the DSSC changes consequently in the particle size, morphology, crystallization and surface state of the $TiO_2$. Nanocrystalline $TiO_2$ materials have been widely used as a photo catalyst and an electron collector in DSSC. Front electrode in DSSC are required to have an extremely high porosity and surface area such that the dyes can be sufficiently adsorbed and be electronically interconnected, resulting in the efficient generation of photocurrent within cells. In this study, DSSC were fabricated by an screen printing for the $TiO_2$ thin film. $TiO_2$ nanoparticles characterized by X-ray diffractometer (XRD) and scanning electron microscope (SEM) and scanning auger microscopy (SAM) and zeta potential and electrochemical impedance spectroscopy(EIS).In addition, DSSC module was modeled and simulated using the SILVACO TCAD software program. Improve the efficiency of DSSC, the effect of $TiO_2$ thin film thickness and $TiO_2$ nanoparticle size was investigated by SILVACO TCAD software program.

  • PDF

Interaction between Selenium and Bacterium and Mineralogical Characteristics of Biotreated Selenium (셀레늄-미생물간의 반응 및 셀레늄 광물화 특성)

  • Lee, Seung-Yeop;Oh, Jong-Min;Baik, Min-Hoon
    • Journal of the Mineralogical Society of Korea
    • /
    • v.24 no.3
    • /
    • pp.217-224
    • /
    • 2011
  • Removal of dissolved selenium by D. michiganensis, a iron-reducing bacterium, and effects of dissolved metal elements such as iron, sulfate, and copper were investigated. Selenide that was reduced from selenite (2 mM) by D. michiganensis was gradually removed from the aqueous medium. As the reduced selenide was combined with aqueous iron, it was precipitated as a nanoparticulate iron-selenide. Sulfate and copper negatively affected the microbial selenite reduction, and the copper was especially toxic to the bacterium, inhibiting a microbial removal of dissolved selenite. These results show that it should be carefully biotreated for a selenium-contaminated site considering in situ sulfate or copper distribution and concentration. Consequently, the formation of iron-selenide by bacteria will be an important measure for preventing a long-distance migration of selenium in the subsurface environments.

The Structural and Optical Properties of GaAs- SiO2 Composite Thin Films With Varying GaAs Nano-particle Size (GaAs 나노입자 크기에 따른 SiO2 혼합박막의 구조적 광학적 특성)

  • Lee, Seong-Hun;Kim, Won-Mok;Sin, Dong-Uk;Jo, Seong-Hun;Jeong, Byeong-Gi;Lee, Taek-Seong;Lee, Gyeong-Seok
    • Korean Journal of Materials Research
    • /
    • v.12 no.4
    • /
    • pp.296-303
    • /
    • 2002
  • For potential application to quantum mechanical devices, nano-composite thin films, consisting of GaAs quantum dots dispersed in SiO$_2$ glass matrix, were fabricated and studied in terms of structural, chemical, and optical properties. In order to form crystalline GaAs quantum dots at room temperature, uniformly dispersed in $SiO_2$matrix, the composite films were made to consist of alternating layers of GaAs and $SiO_2$in the manner of a superlattice using RF magnetron sputter deposition. Among different film samples, nominal thickness of an individual GaAs layer was varied with a total GaAs volume fraction fixed. From images of High Resolution Transmission Electron Microscopy (HRTEM), the formation of GaAs quantum dots on SiO$_2$was shown to depend on GaAs nominal thickness. GaAs deposits were crystalline and GaAs compound-like chemically according to HRTEM and XPS analysis, respectively. From measurement of optical absorbance using a spectrophotometer, absorption edges were determined and compared among composite films of varying GaAs nominal thicknesses. A progressively larger shift of absorption edge was noticed toward a blue wavelength with decreasing GaAs nominal thickness, i.e. quantum dots size. Band gaps of the composite films were also determined from Tauc plots as well as from PL measurements, displaying a linear decrease with increasing GaAs nominal thickness.