• Title/Summary/Keyword: 나노 안전

Search Result 191, Processing Time 0.028 seconds

Effect of Microporous Structure of Al2O3/PVdF_HFP Ceramic Coating Layers on Thermal Stability and Electrochemical Performance of Composite Separators for Lithium-Ion Batteries (Al2O3/PVdF_HFP 세라믹코팅층의 미세기공구조가 리튬이차전지용 복합분리막의 열 안정성 및 전기화학특성에 미치는 영향)

  • Jeong, Hyun-Seok;Kim, Kyu-Chul;Lee, Sang-Young
    • Journal of the Korean Electrochemical Society
    • /
    • v.12 no.4
    • /
    • pp.324-328
    • /
    • 2009
  • The internal short-circuit between cathodes and anodes has been known to be a critical concern for the safety failures of lithium-ion batteries, which is strongly influenced by the thermal stability of separators. In this study, to effectively suppress the internal short-circuit failures, we developed a new composite separator with the improved thermal stability compared to conventional polyolefin-based separators. The composite separators were prepared by introducing a ceramic coating layer ($Al_2O_3$/PVdF-HFP) onto both sides of a polyethylene (PE) separator. The microporous structure of ceramic coating layers is determined by controlling the phase inversion of coating solutions and becomes more developed with the increase of nonsolvent (water) content. This structural change of ceramic coating layers was observed to greatly affect the thermal stability as well as the electrochemical performance of composite separators, which was systematically discussed in terms of phase inversion.

Application of Gamma Irradiation and Its Convergent Treatments on Several Varieties of Oriental Hybrid Lily to Control Leaf Blight (수출용 오리엔탈 백합 품종 잎마름병 방제를 위한 감마선 및 화학 대체제 융복합 처리 효과)

  • Kim, Ji-Hoon;Koo, Tae-Hoon;Hong, Sung-Jun;Yun, Sung-Chul
    • Research in Plant Disease
    • /
    • v.20 no.2
    • /
    • pp.79-86
    • /
    • 2014
  • In order to seek more eco-friend, economic and safer quarantine method than current methyl bromide fumigation, the convergent treatment with 200 Gy of gamma irradiation and several chemicals such as nano-siver particles (NSS), sodium dichloroisocyanurate (NaDCC) was tried on the cuttings of lily in the packing of catonnage box for export. With 6 independent experiments of gamma irradiation on the three lily cultivars, cvs. Siberia, Le reve and Sorbonne, incidence and severity of lily leaf blight was investigated on leaves and petals at 8-d after infection. 200 Gy of gamma irradiation decreased at 13-25% of severity on the leaf of Sorbonne, but it increased at 2-5% of severity on the leaf of Siberia and Le reve. Chemical substitutes such as NSS and NaDCC were not effective to control of lily blight on cuttings. By 200 Gy of gamma irradiation treatment, chlorophyll contents were statistically significantly decreased at 12-d after irradiation and the longevities vaselife of fully open flower of Siberia and Sorbonne were increased at 0.4 to 1.2 days. In addition, the relative fresh weights of the gamma irradiated cuttings were severely dried compared to the non-irradiated control. On the other hands, the symptoms of phyto-toxicity of high dose gamma irradiation at 1 or 2 kGy on cv. Siberia were to be blight at the tip of bloom, bent necks of flower, and delayed the process of flowering.

The New Technology Development Strategy of Cosmeceuticals with Use Advanced Materials Resources (신소재 자원을 활용한 기능성화장품의 신기술 개발전략)

  • Kim Ju-Duck
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.30 no.3 s.47
    • /
    • pp.427-438
    • /
    • 2004
  • Cosmeceuticals products we not the products simply for moisturizing and protecting skin but the ones for encouraging to make improvements on wrinkles and helping to whiten, tan, and protect skin against ultraviolet light. In a broader sense, they refer to products with aiming to maintain healthy condition of skin such that skin troubles could be improved or aging of skin could be delayed. However, cosmeceuticals should not have any side effects because they are applied to the whole body for a long period of time differing from medical products which are used on specific areas for a short time. The number of such cosmeceuticals has increased from 500 in 2001 to 2300 in 2003. In order to develop and broaden the scope of cosmeceuticals, the concept of cosmetics needs to be changed from caring skin to delaying aging of the skin and reviving cells. For this purpose, high-valued materials should be developed through basic researches related to the biological function of skin, in vivo experiment and reaction of skin in response to various stimuli using biotechnologies and bioengineering methods. At the same time, it should be proceeded to develop new nano materials for overcoming skin barriers and transfer matericals for helping to absorb effective substances and maintaining stability.

Suggestion of Physicochemical Characteristics and Safety Management in the Waste Containing Nanomaterials from Engineered Nano-materials Manufacturing Plants and Waste Treatment Facilities (산업용제조시설과 폐기물처리시설에서 발생된 나노폐기물의 물리화학적 특성 및 안전관리방안 제시)

  • Kim, Woo-Il;Yeon, Jin-Mo;Cho, Na-Hyeon;Kim, Yong-Jun;Um, Nam-Il;Kim, Ki-Heon;Lee, Young-Kee
    • Journal of Korea Society of Waste Management
    • /
    • v.35 no.7
    • /
    • pp.670-682
    • /
    • 2018
  • Engineered nanomaterials (ENMs) can be released to humans and the environment through the generation of waste containing engineered nanomaterials (WCNMs) and the use and disposal of nano-products. Nanoparticles can also be introduced intentionally or unintentionally into waste streams. This study examined WCNMs in domestic industries, and target nanomaterials, such as silicon dioxide, titanium oxide, zinc oxide, nano silver, and carbon nanotubes (CNTs), were selected. We tested 48 samples, such as dust, sludge, ash, and by-products from manufacturing facilities and waste treatment facilities. We analyzed leaching and content concentrations for heavy metals and hazardous constituents of the waste. Chemical compositions were also measured by XRD and XRF, and the unique properties of nano-waste were identified by using a particle size distribution analyzer and TEM. The dust and sludge generated from manufacturing facilities and the use of nanomaterials showed higher concentrations of metals such as lead, arsenic, chromium, barium, and zinc. Oiled cloths from facilities using nano silver revealed high concentrations of copper, and the leaching concentrations of copper and lead in fly ash were higher than those in bottom ash. In XRF measurements at the facilities, we detected compounds such as silicon dioxide, sulfur trioxide, calcium oxide, titanium dioxide, and zinc oxide. We found several chemicals such as calcium oxide and silicon dioxide in the bottom ash of waste incinerators.

Next-generation Probiotics, Parabiotics, and Postbiotics (Next-generation probiotics, parabiotics 및 postbiotics)

  • Cho, Kwang Keun;Lee, Seung Ho;Choi, In Soon;Lee, Sang Won
    • Journal of Life Science
    • /
    • v.31 no.6
    • /
    • pp.595-602
    • /
    • 2021
  • Human intestinal microbiota play an important role in the regulation of the host's metabolism. There is a close pathological and physiological interaction between dysbiosis of the intestinal microflora and obesity and metabolic syndrome. Akkermansia muciniphila, which was recently isolated from human feces, accounts for about 1-4% of the intestinal microbiota population. The use of A. muciniphila- derived external membrane protein Amuc_1100 and extracellular vesicles (EVs) could be a new strategy for the treatment of obesity. A. muciniphila is considered a next-generation probiotic (NGP) for the treatment of metabolic disorders, such as obesity. Faecalibacterium prausnitzii accounts for about 5% of the intestinal microbiota population in healthy adults and is an indicator of gut health. F. prausnitzii is a butyrate-producing bacterium, with anti-inflammatory effects, and is considered an NGP for the treatment of immune diseases and diabetes. Postbiotics are complex mixtures of metabolites contained in the cell supernatant secreted by probiotics. Parabiotics are microbial cells in which probiotics are inactivated. Paraprobiotics and postbiotics have many advantages over probiotics, such as clear chemical structures, safe dose parameters, and a long shelf life. Thus, they have the potential to replace probiotics. The most natural strategy to restore the imbalance of the intestinal ecosystem normally is to use NGPs among commensal bacteria in the gut. Therefore, it is necessary to develop new foods or drugs such as parabiotics and postbiotics using NGPs.

Current research trends of analytical methods for non-nutritive sweeteners (Non-nutritive sweeteners 분석을 위한 최근 분석기술 동향)

  • Yun, Choong-In;Kim, Young-Jun
    • Food Science and Industry
    • /
    • v.55 no.1
    • /
    • pp.58-73
    • /
    • 2022
  • Due to the recent demand for low-calorie foods, consumers are looking for alternative sweeteners that can control blood sugar, low risk of tooth decay and low calories. Regulations for permitted sweeteners in food vary from every country, and it is important for the government and the food industry to monitor products containing these sweeteners to ensure global compliance. Therefore, rapid, precise, and accurate analysis for food matrices should be applied to quality control, market surveillance, monitoring, and evaluation of food additive intake in the food industry. To analyze sweeteners simultaneously, it is essential to develop an efficient and rapid analytical method and to perform appropriate pretreatment steps such as solvent extraction and purification. This study presented the recent analysis trends about the suitable extraction method for food matrices focusing on non-nutritive sweeteners. Additionally, techniques for multi-compounds analysis using HPLC and LC-MS/MS and non-destructive analysis techniques using FT-IR were comprehensively described.

A Study on the Fabrication of Heater based on Silicone Rubber (실리콘러버 기반의 히터제작에 관한 연구)

  • Jeong-Oh Hong;Jae Tack Hong;Shin-Hyeong Choi
    • Advanced Industrial SCIence
    • /
    • v.2 no.2
    • /
    • pp.9-15
    • /
    • 2023
  • Since silicone rubber heaters are flexible, they can be directly attached or installed in objects to be heated even in flat, curved or three-dimensional shapes. Since the current heating method heats the entire object to be heated and raises it to a required temperature, ignoring areas or positions where heat is not required, partial intensive heating cannot be performed. When using multi-heating zones, rather than heating the entire object to be heated, only the parts that need heat are intensively heated according to the process, so it is possible to heat quickly by local location by applying different amounts of heat with a small amount of electric capacity to each place that needs heat, and heat energy can reduce. In this study, the temperature and heating time of the partially concentrated region in the multi-heating region structure are measured so that a uniform temperature or temperature difference occurs in the region requiring thermal fusion. In order to determine the optimal power density range and reduce capacitance, the safety of a silicon rubber heater manufactured with a multi-heating zone structure is investigated. If the silicon rubber heater is manufactured in a multi-heating method, the multi-intensive heating technology can be ideally applied to all heating processes.

Development of Sustainable Packaging Materials Using Coffee Silverskin and Spent Coffee Grounds: A Comprehensive Review (커피 은피와 커피찌꺼기를 활용한 지속가능한 포장소재 개발을 위한 연구동향)

  • Jihyeon Hwang;Dowan Kim
    • KOREAN JOURNAL OF PACKAGING SCIENCE & TECHNOLOGY
    • /
    • v.30 no.1
    • /
    • pp.1-14
    • /
    • 2024
  • As awareness of environmental issues continues to grow, there is an escalating demand for recycling and repurposing byproducts of agricultural and food production processes and their conversion to high-value products. Coffee is the most widely consumed beverage globally; during coffee beverage processing and consumption, byproducts such as coffee silverskin (CS), spent coffee grounds (SCGs), and oil are generated. Despite containing beneficial materials such as cellulose, hemicellulose, lignin, lipids, and bioactive substances, these byproducts are typically discarded in landfills or incinerated. The utilization of CS, SCGs, and oil in the development of packaging materials holds significant potentials toward the realization of a sustainable society. To this end, considerable research efforts have been dedicated to the development of high-value materials derived from coffee byproducts, including functional fillers, polymer composites, and biodegradable polymers. Notably, CS and SCGs have been employed as functional fillers in polymer composites. Additionally, lipids extracted from SCGs have been used as plasticizers for polymers and cultured with microorganisms to produce biodegradable polymers. This review focuses on the research and development of polymer/CS and polymer/SCG composites as well as cellulose extraction and utilization from CS and SCGs and its applications, oil extraction from SCGs, and cultivation with microorganisms using extracted oil for polyhydroxyalkanoates(PHA) production.

Potential Contamination Sources on Fresh Produce Associated with Food Safety

  • Choi, Jungmin;Lee, Sang In;Rackerby, Bryna;Moppert, Ian;McGorrin, Robert;Ha, Sang-Do;Park, Si Hong
    • Journal of Food Hygiene and Safety
    • /
    • v.34 no.1
    • /
    • pp.1-12
    • /
    • 2019
  • The health benefits associated with consumption of fresh produce have been clearly demonstrated and encouraged by international nutrition and health authorities. However, since fresh produce is usually minimally processed, increased consumption of fresh fruits and vegetables has also led to a simultaneous escalation of foodborne illness cases. According to the report by the World Health Organization (WHO), 1 in 10 people suffer from foodborne diseases and 420,000 die every year globally. In comparison to other processed foods, fresh produce can be easily contaminated by various routes at different points in the supply chain from farm to fork. This review is focused on the identification and characterization of possible sources of foodborne illnesses from chemical, biological, and physical hazards and the applicable methodologies to detect potential contaminants. Agro-chemicals (pesticides, fungicides and herbicides), natural toxins (mycotoxins and plant toxins), and heavy metals (mercury and cadmium) are the main sources of chemical hazards, which can be detected by several methods including chromatography and nano-techniques based on nanostructured materials such as noble metal nanoparticles (NMPs), quantum dots (QDs) and magnetic nanoparticles or nanotube. However, the diversity of chemical structures complicates the establishment of one standard method to differentiate the variety of chemical compounds. In addition, fresh fruits and vegetables contain high nutrient contents and moisture, which promote the growth of unwanted microorganisms including bacterial pathogens (Salmonella, E. coli O157: H7, Shigella, Listeria monocytogenes, and Bacillus cereus) and non-bacterial pathogens (norovirus and parasites). In order to detect specific pathogens in fresh produce, methods based on molecular biology such as PCR and immunology are commonly used. Finally, physical hazards including contamination by glass, metal, and gravel in food can cause serious injuries to customers. In order to decrease physical hazards, vision systems such as X-ray inspection have been adopted to detect physical contaminants in food, while exceptional handling skills by food production employees are required to prevent additional contamination.

Formation of Liquid Crystalline with Hydrogenated Lecithin and Its Effectiveness (수소첨가레시친을 이용한 액정 젤의 형성과 보습효과)

  • Kim, In-Young;Lee, Joo-Dong;Ryoo, Hee-Chang;Zhoh, Choon-Koo
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.30 no.2
    • /
    • pp.159-165
    • /
    • 2004
  • This study described about method that forms liquid crystal gel (LCG) by main ingredient with hydrogenated lechin (HL) in O/W emulsion system. Result of stability test is as following with most suitable LCG's composition. Composition of LCG is as following, to form liquid crystal, an emulsifier used 4.0wt% of cetostearyl alcohol (CA) by 4.0wt% of HL as a booster. Moisturizers contained 2wt% of glycerin and 3.0wt% of 1,3-butylene glycol (1,3-BG). Suitable emollients used 3.0wt% of cyclomethicone, 3.0wt% of isononyl isononanoate (ININ), 3.0wt% of cerpric/carprylic triglycerides (CCTG), 3.0wt% of macademia nut oil (MNO) in liquid crystal gel formation. On optimum conditions of LCG formation, the pHs were formed all well under acidity or alkalinity conditions (pH=4.0-11.0). Considering safety of skin, pH was the most suitable 6.0${\pm}$1.0 ranges. The stable hardness of LCG formation appeared best in 32 dyne/$\textrm{cm}^2$. Particle of LCG is forming size of 1-20$\mu\textrm{m}$ range, and confirmed that the most excellent LCG is formed in 1-6$\mu\textrm{m}$ range. According to result that observe shape of LCG with optical or polarization microscope, LCG could was formed, and confirmed that is forming multi -layer lamellar type structure around the LCG. Moisturizing effect measured clinical test about 20 volunteers. As a result, moisturizing effect of LCG compares to placebo cream was increased 36.6%. This could predicted that polyol group is appeared the actual state because is adsorbed much to round liquid crystal droplets to multi-lamellar layer's hydrophilic group. It could predicted that polyol group is vast quantity present phase that appear mixed because is adsorbed to round liquid crystal to multi-lamellar layer's hydrophilic group. This LCG formation theory may contribute greatly in cosmetics and pharmacy industry development.