• Title/Summary/Keyword: 나노 실리카 입자

Search Result 179, Processing Time 0.031 seconds

Formulation and ink-jet 3D printability of photo curable nano silica ink (광경화 나노 실리카 잉크의 합성 및 잉크젯 프린팅 적층 특성평가)

  • Lee, Jae-Young;Lee, Ji-Hyeon;Park, Jae-Hyeon;Nahm, Sahn;Hwang, Kwang-Taek;Kim, Jin-Ho;Han, Kyu-Sung
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.29 no.6
    • /
    • pp.345-351
    • /
    • 2019
  • Recently, ink-jet printing technology has been applied for various industries such as semiconductor, display, ceramic tile decoration. Ink-jet printing has advantages of high resolution patterning, fast printing speed, high ink efficiency and many attempts have been made to apply functional materials with excellent physical and chemical properties for the ink-jet printing process. Due to these advantages, research scope of ink-jet printing is expanding from conventional two-dimensional printing to three-dimensional printing. In order to expand the application of ink-jet printing, it is necessary to optimize the rheological properties of the ink and the interaction with the substrate. In this study, photo curable ceramic complex ink containing nano silica particles were synthesized and its printability was characterized. Contact angle of the photo curable silica ink were modified by control of the ink composition and the surface property of the substrate. Effects of contact angle on printing resolution and three-dimensional printability were investigated in detail.

Printability of coating layer with nano silica sol for inkjet printing high-end photo paper (나노 실리카 졸을 이용한 잉크젯 프린팅용 고품질 인쇄용지 도공층의 인쇄적성)

  • Kim, Hye-Jin;Nahm, Sahn;Han, Kyu-Sung;Hwang, Kwang-Taek;Kim, Jin-Ho
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.29 no.6
    • /
    • pp.352-358
    • /
    • 2019
  • In recent years, printing paper with a function of information delivery and aesthetic value has attracted a great attention with increasing market demand for coated paper that is capable of high quality printing. The coated paper for inkjet printing with high-quality of photorealistic grades requires the coating layer with a good wettability and porous surface structure in order to improve the printability of ink. In this study, the coated paper was prepared using polyvinyl alcohol (PVA) and surface treated nano silica sol with silane coupling agent. It was confirmed that the coating layer with surface treated nano silica sol showed a uniform pore distribution and flat surface roughness. Glossiness of the prepared printing paper was similar to that of commercial high quality photo paper. Especially, the coated paper with surface treated nano silica sol showed improved printability with excellent roundness of the printed dot of ink. These results indicates that the coating layer with excellent wettability and uniform pore distribution can be formed by using the nano-silica particles with improved dispersibility through the surface treatment of the silane coupling agent.

악티늄족 및 란탄족 원소 회수를 위한 기능성 고분자-탄소 나노 구조체

  • Jeong, Yong-Ju;Sim, Jun-Bo;Baek, Seung-U;Kim, Si-Hyeong;Gwon, Sang-Un;Kim, Gwang-Rak;Jeong, Heung-Seok;An, Do-Hui
    • Proceedings of the Korean Radioactive Waste Society Conference
    • /
    • 2009.11a
    • /
    • pp.198-199
    • /
    • 2009
  • 킬레이팅 고분자를 메조기공 탄소 표면 위에 흡착시킴으로써 금속이온과 착물을 형성할 수 있는 기능성 나노구조체를 제조하였다. 악티늄족 원소를 단일입자 내에 영구처분을 위한 예비연구로서 Eu을 대용물(surrogate)로 사용하여 기능성 나노 구조체에 주입한 후 메조기공 입구를 고분자반응을 통해 봉쇄함으로써 Eu의 단일입자 내 고정화를 시도하였다. 시간에 따라 침출현상을 분석한 결과, 고분자로 메조기공을 blocking 하였을 때 Eu의 침출현상이 크게 완화되는 것을 확인하였다. 이는 시멘트화나 유리화 등과 같은 고비용 공정을 거치지 않고도 단일입자 내 유해 금속의 영구처분이 가능하다는 것을 의미한다. 더 나아가, 이러한 접근방법은 지지체로 메조기공 탄소에 국한되지 않고 실리카와 같은 다른 메조기공 금속산화물에 적용될 수 있다는 점에서 큰 강점이 있다.

  • PDF

Status And Perspectives of Ultra-Lightweight Silica Aerogel Superinsulation Materials (초경량 실리카 에어로젤 초단열재의 현황 및 전망)

  • Dong Jin, Suh
    • Clean Technology
    • /
    • v.28 no.4
    • /
    • pp.301-308
    • /
    • 2022
  • Since nanoporous silica aerogel was first synthesized in 1931, its potential as an ultra-lightweight superinsulation material has been steadily attracting attention. Silica aerogel is the best thermal insulation material to date. However, the potential applications of this lightweight material have so far been hindered by its inherent fragibility and brittleness arising from its ultra-porous nature. Although the monolithic form of silica aerogel has the best ultra-lightweight superinsulation properties, it cannot be used in this form. Instead it is used in the form of powders, particles, and blankets. However, these forms still have shortcomings. Silica aerogel is most widely applied in the form of a fiber-reinforced aerogel blanket, but this form is likely to generate dust when handled. Although silica aerogel particles have been proven to be non-toxic to humans, dust formation remains a major barrier to the widespread application of silica aerogel blankets. This paper will investigate the unique properties of silica aerogel and determine what fields it can be used in or potentially be used in due to its unique properties. In addition, we will review the important advances in silica aerogel synthesis technology and its commercialization so far, and then consider the problems that exist for its widespread commercialization in the future and how to overcome them.

Effect of Cosurfactant on Preparation of Silica Nanoparticles using Water in Oil Microemulsion of Nonionic Surfactant (보조계면활성제가 비이온 계면활성제의 Water in Oil 마이크로에멀젼을 이용한 실리카 나노입자 제조에 미치는 영향)

  • Kim, TaeHoon;Lim, JongChoo
    • Korean Chemical Engineering Research
    • /
    • v.46 no.2
    • /
    • pp.356-368
    • /
    • 2008
  • The effects of cosurfactant on silica nanoparticles were investigated in systems containing surfactant, oil and aqueous ammonia solution where nanoparticles were prepared using a single phase water-in-oil (W/O) microemulsion. For the same oil phase, a single phase region was dependent on the interaction between surfactant and oil. For the cyclohexane system, NP-5 surfactant showed a wider single phase region than NP-4. The addition of n-propanol as a cosurfactant resulted in an increase or a decrease of a single phase W/O microemulsion region depending on the continuous oil phase. For both cyclohexane and isooctane systems, the addition of n-propanol resulted in a decrease in the single phase region. On the other hand, for n-heptane system, the addition of n-propanol expanded a single phase W/O microemulsion region. Silica nanoparticles prepared within a single phase region showed that relatively large number of particles of irregular shape were obtained with the addition of n-propanol to NP surfactant system. The addition of n-propanol to LA-5 surfactant and n-heptane system produced a decrease in average particle size and an increase in the number of particles formed due to a decrease in the intermicellar exchange rate among microemulsion droplets.

A Study on the Low Speed Impact Response and Frictional Characteristics of Shear Thickening Fluid Impregnated Kevlar Fabrics (전단농화유체를 함침한 케블라 직물의 저속충격 거동 및 마찰특성 연구)

  • Lee, Bok-Won;Lee, Song-Hyun;Kim, Chun-Gon;Yoon, Byung-Il;Paik, Jong-Gyu
    • Composites Research
    • /
    • v.21 no.2
    • /
    • pp.15-24
    • /
    • 2008
  • In this study, shear thickening fluid (STF) filled with rigid nano silica particles was impregnated in plain woven Kevlar fabrics to improve the impact resistance performance. The nano silica particles with an average diameter of 100nm, 300nm, and 500nm were used to make shear thickening fluid to estimate the effect of particle size on the impact behavior of STF impregnated Kevlar fabrics. The yam pull-out and frictional tests were conducted to estimate the effect of impregnated STF on the frictional characteristics. The test results showed that the friction forces were dramatically increased at the STF onset shear strain rates that were measured in preliminary rheology tests. The low speed impact tests were performed using the drop test machine. The results showed that the impregnated STF improved the impact resistance performance of the Kevlar fabrics in terms of the impact energy absorption and the deformation. It has been shown through tests that the impregnated STF affects the interfacial friction which contributes to improve the energy absorption in the Kevlar fabrics. Especially, the impregnation of the STF with the smaller particle size into the Kevlar fabrics showed the better performance in impact energy absorption.

Preparation of Urethane Nanocomposites with Inorganic Nano Fillers and Their Physical Properties (무기계 나노분말 충전 폴리우레탄 나노복합재료의 제조 및 물성)

  • Yang Yun-Kyu;Hwang Taek-Sung;Hwang Eui-Hwan
    • Polymer(Korea)
    • /
    • v.30 no.2
    • /
    • pp.129-134
    • /
    • 2006
  • Nanocomposites of polyurethane were prepared from inorganic nano particles, $Na^+-montmorillonite$ (MMT), silica, $CaCO_3$, and surface modified MMT and their properties were investigated. It was shown that the molecular weight and polydispenity of nanocomposites of polyurethane were 20000 to 28000 and 1.0 to 2.0, respectively. d-Spacing for nanocomposites of MMT were increased than that of pure MMT. Initial degradation temperature of nanocomposites were 250 to $280^{\circ}C$. And also, the range of weight loss for nanocomposites were decreased and the end of thermal degradation was observed at higher temperatures about $50^{\circ}C$. The elongation at break for $CaCO_3$ filled nanocomposites were the highest among the nanocomposites used in this study. studied. It was found that the tensile strength increased with increasing the filler contents while the silica nanocomposite exhibited the lowest increase and the $CaCO_3$ nanocomposite the highest.

Synthesis, Characterizations, and Applications of Metal-Ions Incorporated High Quality MCM-41 Catalysts (고품질 금속 이온 첨가 MCM-41 분자체 촉매의 제법, 특성화 및 응용 반응)

  • Lim, Steven S.;Haller, Gary L.
    • Korean Chemical Engineering Research
    • /
    • v.51 no.4
    • /
    • pp.443-454
    • /
    • 2013
  • Various metal ions (transition and base metals) incorporated MCM-41 catalysts can be synthesized using colloidal and soluble silica with non-sodium involved process. Transition metal ion-typically $V^{5+}$, $Co^{2+}$, and $Ni^{2+}$-incorporated MCM-41 catalysts were synthesized by isomorphous substitution of Si ions in the framework. Each incorporated metal ion created a single species in the silica framework, single-site solid catalyst, showing a substantial stability in reduction and catalytic activity. Radius of pore curvature effect was investigated with Co-MCM-41 by temperature programmed reduction (TPR). The size of metallic Co clusters, sub-nanometer, could be controlled by a proper reduction treatment of Co-MCM-41 having different pore size and the initial pH adjustment of the Co-MCM-41 synthesis solution. These small metallic clusters showed a high stability under a harsh reaction condition without serious migration, resulting from a direct anchoring of small metallic clusters to the partially or unreduced metal ions on the surface. After a complete reduction, partial occlusion of the metallic cluster surface by amorphous silica stabilized the particles against aggregations. As a probe reaction of particle size sensitivity, carbon single wall nanotubes (SWNT) were synthesized using Co-MCM-41. A metallic cluster stability test was performed by CO methanation using Co- and Ni-MCM-41. Methanol and methane partial oxidations were carried out with V-MCM-41, and the radius of pore curvature effect on the catalytic activity was investigated.

Synthesis and Characterization of Quartz Nanocrystals (석영 나노 결정의 합성과 특성)

  • Moon, Gyuseop;Chung, Sungwook
    • Applied Chemistry for Engineering
    • /
    • v.31 no.6
    • /
    • pp.697-700
    • /
    • 2020
  • We report the synthesis and characterization of quartz nanocrystals (NCs). Quartz NCs were synthesized from the dissolution of amorphous silica nanoparticle precursors under the mild hydrothermal condition of ~250 ℃ and autogenic pressure. It was confirmed that the average size of the nanostructure with a highly crystalline phase of α-quartz can be tuned in a relatively narrow range from 407.5 to 826.2 nm with respect to the reaction time. α-Quartz NCs have potential uses for technological applications in optoelectronics, sensing, and rechargeable battery devices.