• Title/Summary/Keyword: 나노 분말

Search Result 1,150, Processing Time 0.026 seconds

Development of Highly Efficient Oil-Water Separation Materials Utilizing the Self-Bonding and Microstructuring Characteristics of Aluminum Nitride Nanopowders (질화알루미늄 나노분말의 자가 접착과 미세구조화 특성을 활용한 고효율 유수분리 소재 개발)

  • Heon-Ju Choi;Handong Cho
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.27 no.3
    • /
    • pp.601-607
    • /
    • 2024
  • The discharge of oily wastewater into water bodies and soil poses a serious hazard to the environment and public health. Various conventional techniques have been employed to treat oil-water mixtures and emulsions; Unfortunately, these approaches are frequently expensive, time-consuming, and unsatisfactory outcomes. Porous materials and adsorbents are commonly used for purification, but their use is limited by low separation efficiencies and the risk of secondary contamination. Recent advancements in nanotechnology have driven the development of innovative materials and technologies for oil-contaminated wastewater treatment. Nanomaterials can offer enhanced oil-water separation properties due to their high surface area and tunable surface chemistry. The fabrication of nanofiber membranes with precise pore sizes and surface properties can further improve separation efficiency. Notably, novel technologies have emerged utilizing nanomaterials with special surface wetting properties, such as superhydrophobicity, to selectively separate oil from oil-water mixtures or emulsions. These special wetting surfaces are promising for high-efficiency oil separation in emulsions and allow the use of materials with relatively large pores, enhancing throughput and separation efficiency. In this study, we introduce a facile and scalable method for fabrication of superhydrophobic-superoleophilic felt fabrics for oil/water mixture and emulsion separation. AlN nanopowders are hydrolyzed to create the desired microstructures, which firmly adhere to the fabric surface without the need for a binder resin, enabling specialized wetting properties. This approach is applicable regardless of the material's size and shape, enabling efficient separation of oil and water from oil-water mixtures and emulsions. The oil-water separation materials proposed in this study exhibit low cost, high scalability, and efficiency, demonstrating their potential for broad industrial applications.

Investigation of direct growth behavior of carbon nanotubes on cathode powder materials in lithium-ion batteries (리튬이차전지 양극 분말 소재 위 탄소나노튜브의 직접 성장 거동 고찰)

  • Hyun-Ho Han;Jong-Hwan Lee;Goo-Hwan Jeong
    • Journal of the Korean institute of surface engineering
    • /
    • v.57 no.1
    • /
    • pp.22-30
    • /
    • 2024
  • This study reports a direct growth of carbon nanotubes (CNTs) on the surface of LiCoO2 (LCO) powders to apply as highly efficient cathode materials in lithium-ion batteries (LIB). The CNT synthesis was performed using a thermal chemical vapor deposition apparatus with temperatures from 575 to 625 ℃. Ferritin molecules as growth catalyst of CNTs were mixed in deionized (DI) water with various concentrations from 0.05 to 1.0 mg/mL. Then, the LCO powders was dissolved in the ferritin solution at a ratio of 1g/mL. To obtain catalytic iron nanoparticles on the LCO surface, the LCO-ferritin suspension was dropped in silicon dioxide substrates and calcined under air at 550℃. Subsequently, the direct growth of CNTs on LCO powders was performed using a mixture of acetylene (10 sccm) and hydrogen (100 sccm) for 10 min. The growth behavior was characterized by scanning and transmission electron microscopy, Raman scattering spectroscopy, X-ray diffraction, and thermogravimetric analysis. The optimized condition yielding high structural quality and amount of CNTs was 600 ℃ and 0.5 mg/mL. The obtained materials will be developed as cathode materials in LIB.

Nanoscale Pattern Formation of Li2CO3 for Lithium-Ion Battery Anode Material by Pattern Transfer Printing (패턴전사 프린팅을 활용한 리튬이온 배터리 양극 기초소재 Li2CO3의 나노스케일 패턴화 방법)

  • Kang, Young Lim;Park, Tae Wan;Park, Eun-Soo;Lee, Junghoon;Wang, Jei-Pil;Park, Woon Ik
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.27 no.4
    • /
    • pp.83-89
    • /
    • 2020
  • For the past few decades, as part of efforts to protect the environment where fossil fuels, which have been a key energy resource for mankind, are becoming increasingly depleted and pollution due to industrial development, ecofriendly secondary batteries, hydrogen generating energy devices, energy storage systems, and many other new energy technologies are being developed. Among them, the lithium-ion battery (LIB) is considered to be a next-generation energy device suitable for application as a large-capacity battery and capable of industrial application due to its high energy density and long lifespan. However, considering the growing battery market such as eco-friendly electric vehicles and drones, it is expected that a large amount of battery waste will spill out from some point due to the end of life. In order to prepare for this situation, development of a process for recovering lithium and various valuable metals from waste batteries is required, and at the same time, a plan to recycle them is socially required. In this study, we introduce a nanoscale pattern transfer printing (NTP) process of Li2CO3, a representative anode material for lithium ion batteries, one of the strategic materials for recycling waste batteries. First, Li2CO3 powder was formed by pressing in a vacuum, and a 3-inch sputter target for very pure Li2CO3 thin film deposition was successfully produced through high-temperature sintering. The target was mounted on a sputtering device, and a well-ordered Li2CO3 line pattern with a width of 250 nm was successfully obtained on the Si substrate using the NTP process. In addition, based on the nTP method, the periodic Li2CO3 line patterns were formed on the surfaces of metal, glass, flexible polymer substrates, and even curved goggles. These results are expected to be applied to the thin films of various functional materials used in battery devices in the future, and is also expected to be particularly helpful in improving the performance of lithium-ion battery devices on various substrates.

The Food Safety of Superfine Powder (Phellinus linteus) Processed by Nanomill in C57BL/6 Mice (C57BL/6 마우스에서 나노밀 가공된 초미세분말(상황버섯)의 식이 안전성 연구)

  • Kim, Dong-Heui;Teng, Yung-Chien;Yoon, Yang-Sook;Qi, Xu-Feng;Jeong, Hyun-Seok;Joo, Kyung-Bok;Lee, Kyu-Jae
    • Applied Microscopy
    • /
    • v.39 no.2
    • /
    • pp.133-139
    • /
    • 2009
  • A officinal mushroom, Phellinus linteus (PL) has been known to exhibit potent biological activities including antioxidative and anticancer effect. PL is consumed as a type of powder or extract for the purpose of health promotion and disease treatment. Recently superfine PL products was commercialized according to the development of pulverizing technology such as nanomill, so the evaluation of food safety is suggested. This study was conducted to evaluate the food safety of superfine PL (SPL) through hematological, biochemical and histological examination in mice as compared with fine PL (FPL). In the particle size distribution in volume after nanomill processing, the mean diameter of SPL and FPL particles was 11.78 ${\mu}m$ and 216.1 ${\mu}m$, and d (0.5), the particle diameter measured at 50% of distribution was 5.5 ${\mu}m$ and 147.9 ${\mu}m$, respectively. As the result of body weight, food intake and the weight of organs, SPL group didn't show any statistical difference compared with FPL group and normal group (N). Hematological and biochemical values were also involved in the normal range, although ALT (N vs. FPL, P<0.001) and BUN (N vs. FPL, P<0.01; N vs. SPL, P<0.01) showed significance compared with N group but there are no significance between FPL and SPL group. In the result of histological examination with liver, kidney, spleen, and small and large intestine, abnormal findings such as inflammatory reaction and histological changes were not observed. Our results suggest that the oral intake of SPL diet is not harmful to the animal in the hematological, biochemical and histological aspects although particle size was reduced to the level of superfine. However, further study will be necessary to confirm the histological safety in relation to the gastrointestinal contact of superfine particles in the case of large amount and long-term intake.

Synthesis, Structure and Characterization of Nd2XCd2-3XSiO4 (0.01≤X≤0.21) Solid-Solutions (Nd2XCd2-3XSiO4 (0.01≤X≤0.21) 고용체의 합성과 구조 규명)

  • Ramesh, S.;Das, B.B.
    • Journal of the Korean Chemical Society
    • /
    • v.55 no.3
    • /
    • pp.502-508
    • /
    • 2011
  • Synthesis of $Nd_{2x}Cd_{2-3x}SiO_4$ ($0.01{\leq}x{\leq}0.21$) [S1-S3: x=0.01, 0.11 and 0.21] solid solutions were prepared by solgel method. Powder x-ray diffraction (XRD) results show monoclinic unit cell with space group P21/m. The average crystallite sizes are found to be 20 to 45 nm. The Scanning Electron Microcopy (SEM) images show morphology of the sample is in globular nature. The energy dispersive analysis of x-rays (EDX) and X-ray mapping results confirmed that all the constituent elements of the composites were present and that were distributed in uniformly. The optical absorption band at ~750 nm was due to $^4I_{9/2}{\rightarrow}^4F_{7/2}+^4S_{3/2}$ transition optically active $Nd^{3+}$ ions. Electron Paramagnetic Resonance (EPR) lineshapes of S1-S3 at 10, 40, 77 and 300 K show a broad unresolved isotropic lineshapes were observed due to rapid spin lattice relaxation of $Nd^{3+}$.

Design and Operational Characteristics of 150MW Pulse Power System for High Current Pulse Forming Network (대전류 펄스 성형이 가능한 150MW급 펄스파워 시스템의 설계 및 동작특성)

  • Hwang, Sun-Mook;Kwon, Hae-Ok;Kim, Jong-Seo;Kim, Kwang-Sik
    • Journal of IKEEE
    • /
    • v.16 no.3
    • /
    • pp.217-223
    • /
    • 2012
  • This paper presents design and operational characteristics of 150 MW pulse power system for high current pulse forming network to control trigger time. The system is composed of two capacitor bank modules. Each capacitor bank module consist of a trigger vacuum switch, 9k 33kJ capacitor, an energy dump circuit, a crowbar circuit and a pulse shaping inductor and is connected in parallel. It is controlled by trigger controller to select operational module and determine triggering time. Pspice simulation was conducted about determining parameters of components such as crowbar circuit, capacitor, pulse forming inductor, trigger vacuum switch and predicting results of experiment circuit. The result of the experiment was in good agreement with the result of the simulation. The various current shapes with 300~650 us pulse width is formed by sequential firing time control of capacitor bank module. The maximum current is about 40 kA during simultaneous triggering of two capacitor bank modules. The developed 150 MW pulse power system can be applied to high current pulse power system such as rock fragmentation power sources, Rail gun, Coil gun, nano-powers, high power microwave.

Synthesis and Rietveld Refinement of the Cathode Material $LiFePO_4/C$ for Rechargeable Lithium Batteries (리튬 2차전지용 양극소재 $LiFePO_4/C$의 합성 및 리트벨트 구조분석)

  • Hwang, Gil-Chan;Choi, Jin-Beom;Kim, Jae-Kwang;Ahn, Jou-Hyeon
    • Journal of the Mineralogical Society of Korea
    • /
    • v.22 no.1
    • /
    • pp.63-72
    • /
    • 2009
  • Carbon-coated lithium iron phosphate ($LiFePO_4/C$) composites are synthesized by the modified mechanical activation method (modified MA process) and studied by the Rietveld structural refinement. Rietveld indices of $LiFePO_4/C$ indicate good fitting with $R_p=8.14%,\;R_{wp}=11.1%,\;R_{exp}=9.09%,\;R_B=3.88%$, and S (GofF, Goodness of fit) = 1.2, respectively. $LiFePO_4/C$ with a space group Pnma shows a = 10.3229(3)${\AA}$, b = 6.0052(2) ${\AA}$, c = 4.6939(1) ${\AA}$, and V = 290.98(1) ${\AA}^3$ in dimension, indicating good agreements with those of previous works. Synthetic powders are nano-sized ($65{\sim}90nm$) homogeneous particles with high purity. Thus the modified MA method will be an efficient process to get a high quality cathode material for commercial lithium batteries.

The Effect of the Addition of BZO Nanopowder in the YBCO PLD Targets on the Flux Pinning Properties of BZO-YBCO Thin Film (YBCO PLD 타겟에 BZO 나노분말 첨가에 따른 PLD-YBCO 박막의 자속고정 효과)

  • Song, K.J.;Ko, R.K.;Lee, Y.S.;Park, Y.M.;Yang, J.S.;Kim, H.S.;Ha, H.S.;Ha, D.W.;Kim, S.W.;Oh, S.S.;Kim, D.J.;Park, C.;Yoo, S.I.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.11a
    • /
    • pp.20-21
    • /
    • 2005
  • [ $BaZrO_3$ ], nanopowder was added to YBCO powder to make ($BazrO_3)_x(YBCO)_{(100-x)mol.-%}$ ($BZO_x$-YBCO) ($0{\leq}x{\leq}10$) composite targets fur pulsed laser deposition of superconducting layer in order to investigate the effect of the addition of BZO nanopowder in the YBCO target on the flux pinning properties of $BZO_x$-YBCO thin films. All the $BZO_x$-YBCO thin films were grown on single crystal STO substrate under similar conditions in the PLD chamber. The effect of YBCO targets doped with BZO on the flux pinning properties of $BZO_x$-YBCO thin films has been investigated comparatively. The isothermal magnetizations M(H) of the films were measured at temperatures between 5 and 80 K in fields up to 5 T, employing a PPMS. The optimal amount of BZO nanopowders in $BZO_x$-YBCO thin films to obtain the strongest flux pinning effects at high magnetic fields is about 6 mol.-%.

  • PDF

Hydrothermal Synthesis and Structural Characterization of x mol% Calcia-Stabilized ZrO2 Nanopowders (x mol% 칼시아-안정화 지르코니아 나노분말의 수열합성 및 구조적 특성평가)

  • Ryu, Je-Hyeok;Moon, Jung-In;Park, Yeon-Kyung;Nguyen, Tuan Dung;Song, Jeong-Hwan;Kim, Taik-Nam
    • Korean Journal of Materials Research
    • /
    • v.22 no.5
    • /
    • pp.220-226
    • /
    • 2012
  • Pure zirconia and $x$ mol% calcia partially stabilized zirconia ($x$ = 1.5, 3, and 8) nanopowders were synthesized by hydrothermal method with various reaction temperatures for 24 hrs. The precipitated precursor of pure zirconia and $x$ mol% calcia doped zirconia was prepared by adding $NH_4OH$ to starting solutions; resulting sample was then put into an autoclave reactor. The optimal experimental conditions, such as reaction temperatures and times and amounts of stabilizer CaO, were carefully studied. The synthesized $ZrO_2$ and $x$ mol% CaO-$ZrO_2$ ($x$ = 1.5, 3, and 8) powders were characterized by XRD, SEM, TG-DTA, and Raman spectroscopy. When the hydrothermal temperature was as low as $160^{\circ}C$, pure $ZrO_2$ and $x$ mol% CaO-$ZrO_2$ ($x$ = 1.5 and 3) powders were identified as a mixture of monoclinic and tetragonal phases. However, a stable tetragonal phase of zirconia was observed in the 8 mol% calcia doped zirconia nanopowder at hydrothermal temperature above $160^{\circ}C$. To observe the phase transition, the 3 mol% CaO-$ZrO_2$ and 8 mol% CaO-$ZrO_2$ nanopowders were heat treated from 600 to $1000^{\circ}C$ for 2h. The 3 mol% CaO-$ZrO_2$ heat treated at above $1000^{\circ}C$ was found to undergo a complete phase transition from mixture phase to monoclinic phase. However, the 8 mol% calcia doped zirconia appeared in the stable tetragonal phase after heat treatment. The result of this study therefore should be considered as the preparation of 8 mol% CaO-$ZrO_2$ nanopowders via the hydrothermal method.

Experimental Study on the Mitigation of Harmful Algal Blooms by Mono-Minerals (환경친화성 단일 광물질에 의한 적조구제 실험)

  • 장영남;채수천;배인국;박맹언;김필근;김선옥
    • Economic and Environmental Geology
    • /
    • v.36 no.6
    • /
    • pp.557-561
    • /
    • 2003
  • It is important to find out a new material having high removal efficiency for the harmful algal blooms because the dispersion of Hwangto in a large amount to the sea water may bring some ecologically unfavorable problems. For this purpose, the efficiency of several natural and synthetic mineral species for the mitigation of algal blooms was measured. The mixing ratio of monominerals and the sea water with 3,000∼5,000 cells/$m\ell$ of Cochlodinium polykrikoides was 10 g/${\ell}$ and the removal ratio was measured by counting the living cells after the dispersion time of 10, 30 and 60 min., respectively. According to the experimental results, the removal ratio by illite, kaolinite, montmonmorillonite, red mud, Na-A type of zeolite ranged 84-92% after 1hr of contact time, which is comparable to that of Hwangto. The size of above monominerals ranged 3∼50${\mu}m$. Meanwhile, the amorphose material and hematite with the size of 50∼100 nm showed excellent removal ratio of more than 99% after 30min. of dispersion. The results of the study showed that the removal ratio was not related to the chemical composition and pH of the minerals applied but to the grain size. The experimental results strongly suggest that the main mitigation mechanism would be the contact and coagulation.