Browse > Article
http://dx.doi.org/10.3740/MRSK.2012.22.5.220

Hydrothermal Synthesis and Structural Characterization of x mol% Calcia-Stabilized ZrO2 Nanopowders  

Ryu, Je-Hyeok (Department of Materials Science and Engineering, Graduate School of PaiChai University)
Moon, Jung-In (Department of Materials Science and Engineering, Graduate School of PaiChai University)
Park, Yeon-Kyung (Department of Materials Science and Engineering, Graduate School of PaiChai University)
Nguyen, Tuan Dung (Department of Materials Science and Engineering, Graduate School of PaiChai University)
Song, Jeong-Hwan (Department of Information and Electronic Materials Engineering, PaiChai University)
Kim, Taik-Nam (Department of Information and Electronic Materials Engineering, PaiChai University)
Publication Information
Korean Journal of Materials Research / v.22, no.5, 2012 , pp. 220-226 More about this Journal
Abstract
Pure zirconia and $x$ mol% calcia partially stabilized zirconia ($x$ = 1.5, 3, and 8) nanopowders were synthesized by hydrothermal method with various reaction temperatures for 24 hrs. The precipitated precursor of pure zirconia and $x$ mol% calcia doped zirconia was prepared by adding $NH_4OH$ to starting solutions; resulting sample was then put into an autoclave reactor. The optimal experimental conditions, such as reaction temperatures and times and amounts of stabilizer CaO, were carefully studied. The synthesized $ZrO_2$ and $x$ mol% CaO-$ZrO_2$ ($x$ = 1.5, 3, and 8) powders were characterized by XRD, SEM, TG-DTA, and Raman spectroscopy. When the hydrothermal temperature was as low as $160^{\circ}C$, pure $ZrO_2$ and $x$ mol% CaO-$ZrO_2$ ($x$ = 1.5 and 3) powders were identified as a mixture of monoclinic and tetragonal phases. However, a stable tetragonal phase of zirconia was observed in the 8 mol% calcia doped zirconia nanopowder at hydrothermal temperature above $160^{\circ}C$. To observe the phase transition, the 3 mol% CaO-$ZrO_2$ and 8 mol% CaO-$ZrO_2$ nanopowders were heat treated from 600 to $1000^{\circ}C$ for 2h. The 3 mol% CaO-$ZrO_2$ heat treated at above $1000^{\circ}C$ was found to undergo a complete phase transition from mixture phase to monoclinic phase. However, the 8 mol% calcia doped zirconia appeared in the stable tetragonal phase after heat treatment. The result of this study therefore should be considered as the preparation of 8 mol% CaO-$ZrO_2$ nanopowders via the hydrothermal method.
Keywords
CaO-stabilized $ZrO_2$; hydrothermal; nanopowder; tetragonal; raman;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 J. H. Song and J. H. Lee, Kor. J. Mater. Res., 19(8), 412 (2009).   DOI   ScienceOn
2 H. S. Kil, S. H. Hwag, J. H. Ryu, D. Y. Lim and S. B. Cho., J. Ceram. Soc. Jpn., 120(2), 52 (2012).   DOI
3 Y. Gogotsi and V. Domnich, High-Pressure Surface Science and Engineering, p. 476-520, CRC Press, UK (2003).
4 C. Wulfman, M. Sadoun and M. L. de la Chapelle, IRBM, 31, 257 (2010).   DOI   ScienceOn
5 Y. Li, W. Chi, S. Sampath, A. Goland, H. Herman, J. Allen and J. Ilavsky, J. Am. Chem. Soc., 92(2) 491 (2009).
6 R. C. Garvie, J. Phys. Chem. 69, 1238 (1965).   DOI
7 R. C. Garvie, J. Phys. Chem. 82, 218 (1978).   DOI
8 W. E. Lee and W. M. Rainforth, Ceramic Microstructures: Property Control by Processing, p. 317., Chapman & Hall, London (1994).
9 R. E. Juarez, D. G. Lamas, G. E. Lascalea, N. E. Walsoe de Reca, Defect Diffus. Forum, 177-178, 1 (1999).
10 S. Zhou, G. Garnweitner, M. Niederberger and M. Antonietti, Langmuir, 23(18), 9178 (2007).   DOI   ScienceOn
11 G. Pang, S. Chen, Y. Zhu, O. Palchik, Y. Koltypin, A. Zaban and A. Gedanken, J. Phys. Chem. B, 105, 4647 (2001).   DOI   ScienceOn
12 Y. Hirata, M. Nakamura, M. Miyamoto, Y. Tanaka and X. H. Wang, J. Am. Ceram. Soc., 89(6), 1883 (2006).   DOI   ScienceOn
13 I -M. Hung, D. -T. Hung, K. -Z. Fung and M. -H. Hon, J. Eur. Ceram. Soc., 26, 2627 (2006).   DOI   ScienceOn
14 H. Kumazawa, T. Inoue and E. Sada., Chem. Eng. J. Biochem. Eng. J., 55, 93 (1991).
15 R. E. Juarez, D. G. Lamas, G. E. Lascalea and N. E. Walsoe de Reca, J. Eur. Ceram. Soc., 20, 133 (2000).   DOI   ScienceOn
16 W. Pyda, K. Haberko and M. M. Bulko, J. Am. Ceram. Soc., 74(10), 2622 (1991).   DOI
17 M. Dechamps, B. Djuricic and S. Pickering, J. Am. Ceram. Soc.. 78(11), 2873 (1995).   DOI   ScienceOn
18 K. Matsui, H. Suzuki, M. Ohgai and H. Arashi, J. Am. Ceram. Soc., 78(1), 146 (1995).   DOI   ScienceOn
19 J. Wang, L. S. Ee, S. C. Ng, C. H. Chew and L. M. Gan, Mater. Lett., 30, 119 (1997).   DOI   ScienceOn
20 T. Schmidt, M. Mennig and H. Schmidt, J. Am. Ceram. Soc., 90(5), 1401 (2007).   DOI   ScienceOn
21 R. Jossen, R. Mueller, S. E. Pratsinis, M. Watson and M. K. Akhtar, Nanotechnology, 16, S609 (2005).   DOI   ScienceOn
22 J. Kaspar and P. Fornasiero, J. Solid State Chem., 171, 19 (2003).   DOI   ScienceOn
23 Y. Mizutani, K. Hisada, K. Ukai, H. Sumi, M. Yokoyama, Y. Nakamura and O. Yamamoto, J. Alloy. Comp., 408(12), 518 (2006).   DOI   ScienceOn
24 J. H. Lee, J. Mater. Sci., 38, 4247 (2003).   DOI   ScienceOn
25 A. Mondal and S. Ram, J. Am. Ceram. Soc., 87(12), 2187 (2004).   DOI   ScienceOn
26 A. R. Pebler, J. Mater. Res., 5, 680 (1990).   DOI