• Title/Summary/Keyword: 나노 복합체

Search Result 605, Processing Time 0.027 seconds

Synthesis of Nano TiO2 Coated on Fly Ash Composites by the Precipitation Dropping Method (침전제적하법에 의한 나노 TiO2코팅 석탄회 복합체 제조)

  • 신대용;한상목
    • Journal of the Korean Ceramic Society
    • /
    • v.39 no.6
    • /
    • pp.550-557
    • /
    • 2002
  • TiO$_2$ particles coated on fly ash composites for use in photocatalyst were synthesized by the precipitation dropping method and heated at $700^{\circ}C$ for 2 h. The pH of reaction solution, the addition rate of NH$_4$HCO$_3$, the stirring speed, the reaction temperature and the concentration of TiC1$_4$ had a pronounced effect on the nature of precipitated TiO$_2$ particles on the surface off fly ash and the crystal structure of precipitated TiO$_2$ particles. At an addition rate of NH$_4$HCO$_3$; 1.0 ml/min, the pH of the reaction solution; 6, the stirring speed; 1,000 rpm and the reaction temperature; 8$0^{\circ}C$, about 10 nm of TiO$_2$ particle size and homogeneous precipitated layer on the surface of a fly ash was achieved. On the contrary, at an addition rate of NH$_4$HCO$_3$; 0.3,0.5 ml/min, the pH of the reaction solution; 2 and 11, the stirring speed; 300~500 rpm and the reaction temperature; lower than 5$0^{\circ}C$:, Inhomogeneous precipitated layer was developed on a fly ash. TiO$_2$ particles with anatase phase was formed as-dried precipitation at the low concentration of Tic14, the high addition rate of NH$_4$HCO$_3$ and the high reaction temperature, the crystalline fraction of anatase increased with raising heat-treatment temperature and rutile phase began to formation at 80$0^{\circ}C$. The crystal size of TiO$_2$ particles increased with raising the heat-treatment temperature, the crystal size was showed about 21 m at $700^{\circ}C$. Anatase type of TiO$_2$ coated on the fly ash heated at $700^{\circ}C$ for 2 h showed 1.25 g/cm$^3$of particle density, 82.8% of strength and 69.5 Lab of whiteness and can be used as a photocatalyst.

The Production of Protein-loaded Poly(lactide-co-glycolide) Microparticles using Supercritical Carbon Dioxide (초임계 PGSS 법을 이용한 Poly(lactide-co-glycolide)와 단백질의 마이크로복합체 제조에 관한 연구)

  • Song, Eun-Seok;Jung, Heon-Seop;Lee, Hanho;Kim, Jae-Duck;Kim, Hwayong;Lee, Youn-Woo
    • Clean Technology
    • /
    • v.12 no.2
    • /
    • pp.53-61
    • /
    • 2006
  • A PGSS (Particles from Gas Saturated Solutions) process designed to generate nano-particles using supercritical fluids has been conducted for the fabrication of Poly(lactide-co-glycolide) (PLGA) microparticles that encapsulate a protein drug. It is demonstrated that the polymer and the dry powder of a protein can be mixed under supercritical carbon dioxide conditions and that the protein component retains its biological activity. In this experiment, the mixture of polymer which is plasticized and dry powder protein was sprayed to form solid polymer that encapsulate the protein. It is found that supercritical fluid process give fine tuning of particle size and particle size distribution by simple manipulations of the process parameters. Porous particles were formed with irregular shape. Protein encapsulated in the polymer was found to have enzymatic activity without significant loss of its initial value.

  • PDF

Characteristics of Workers' Exposure to Aerosolized Particles during the Production of Carbon Nanotube-enabled Composites (탄소나노튜브 복합체 취급 작업자의 공기 중 입자상 물질 노출 특성)

  • Kwon, Jiwoon;Kim, Sungho;Jang, Miyeon
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.30 no.1
    • /
    • pp.1-9
    • /
    • 2020
  • Objectives: The purpose of this case study is to assess workers' exposure to carbon nanotubes(CNTs) and characterize particles aerosolized during the process of producing CNT-enabled polytetrafuoroethylene(PTFE) composites at a worksite in Korea. Methods: Personal breathing zone and area samples were collected for determining respirable concentrations of elemental carbon(EC) using NIOSH(National Institute for Occupational Safety and Health) Method 5040. Personal exposure to nano-sized particles was measured as the number concentration and mean diameter using personal ultrafine particle monitors. The number concentration by particle size was measured using optical particle sizers(OPS) and scanning mobility particle sizers(SMPS). Transmission electron microscopy (TEM) area samples were collected on TEM grids and analyzed to characterize the size, morphology, and chemistry of the particles. Results: Respirable EC concentrations ranged from 0.04 to 0.24 ㎍/㎥, which were below 23% of the exposure limit recommended by NIOSH and lower than background concentrations. Number concentrations by particle size measured using OPS and SMPS were not noticeably elevated during CNT-PTFE composite work. Instant increase of number concentrations of nano-sized particles was observed during manual sanding of CNT-PTFE composites. Both number concentrations and mean diameters did not show a statistically significant difference between workers handing CNT-added and not-added materials. TEM analyses revealed the emission of free-standing CNTs and CNT-PTFE aggregate particles from the powder supply task and composite particles embedded with CNTs from the computer numerical control(CNC) machining task with more than tens of micrometers in diameter. No free-standing CNT particles were observed from the CNC machining task. Conclusions: Significant worker exposure to respirable CNTs was not found, but the aerosolization of CNTs and CNT-embedded composite particles were observed during handing of CNT-PTFE powders and CNC machining of CNT-PTFE composites. Considering the limited knowledge on the toxicity of CNTs and CNT composite particles to date, it seems prudent to take a precautionary approach for the protection of workers' health.

Development of Environmental Friendly Nanocomposites using Poly(lactic acid) and Nanomer®I.44P (Poly(lactic acid)와 Nanomer®I.44P를 이용한 친환경 나노복합체 개발)

  • Cho, Won-Ju;Whang, Key;Kim, Jun Tae
    • KOREAN JOURNAL OF PACKAGING SCIENCE & TECHNOLOGY
    • /
    • v.20 no.3
    • /
    • pp.77-84
    • /
    • 2014
  • Biodegradable nanocomposites were fabricated with poly (lactic acid) (PLA) and Nanomer$^{(R)}$ I.44P using ultrasonication (US). Processing conditions were optimized to obtain the maximum tensile properties of the nanocomposites. Poly (ethylene glycol) (PEG) was used as a plasticizer to avoid the brittleness of nanocompsoties. In order to disperse nanoclay into the PLA matrix, PEG and Nanomer$^{(R)}$ I.44P were firstly mixed and dispersed in the chloroform and followed by ultrasonication for 1 min With 10% PEG 400, tensile stress and Young's modulus of the nanocomposites decreased from 53.5 MPa and 2225 MPa to 37.0 MPa and 1757 MPa, respectively, while the elongation was increased from 4% to 21%. Tensile stress, Young's modulus, and elongation of nanocomposites were also increased with nanoclay concentration up to 2% (w/w) and were decreased with further increase in the nanoclay concentration. Transmittance of nanocomposites were significantly decreased from 62.5% for pure PLA film to 7.8% for 5% nanoclay containing nanocomposites. Water vapor permeability of the nanocomposites was also significantly decreased with nanoclay concentration and the minimum WVP of $3.5{\times}10^{-11}g{\cdot}m/m^2{\cdot}s{\cdot}Pa$ was obtained with 5% (w/w) nanoclay concentration. The PLA/Nanomer$^{(R)}$ I.44P nanocomposites showed a great potential as a environmental friendly food packaging material.

  • PDF

Preparation of Silver Nanoparticles Using AgNO3 Precursor as Carrier for Olefin/Paraffin Separation and the Effect Analysis of NO3- (올레핀/파라핀 분리용 운반체로서 AgNO3 전구체를 활용한 은 나노입자 제조 및 NO3-의 효과 분석)

  • kim, Minsu;Kang, Sang Wook
    • Membrane Journal
    • /
    • v.28 no.4
    • /
    • pp.265-270
    • /
    • 2018
  • In previous studies, a poly(ethylene oxide)(PEO)/Ag nanoparicles (AgNPs)(precursor $AgBF_4$)/p-benzoquinone (p-BQ) composite membrane was prepared for olefin/paraffin separation and the performance of this composite membrane was maintained at a selectivity of 10 and a permeability of 15 GPU. However, since the price of $AgBF_4$ precursor is high, this study used $AgNO_3$ as a precursor of Ag nanoparticles which is competitive in terms of price. As a result, it was observed that the separation performance was not obtained because the existing $NO_3{^-}$ could surround AgNPs. In this study, we fabricated PEO, poly(vinyl alcohol)(PVA), and polyether block amide-1657 (PEBAX-1657) polymer composite membrane using electron acceptor 7,7,8,8-tetracyanoquinodimethane (TCNQ) for separation performance even when $AgNO_3$ was used as a precursor of Ag nanoparticles. As a result, it was analyzed that the performance was not observed regardless of the influence of the polymer and the electron acceptor, indicating that the anion of the precursor plays a crucial role in the separation performance.

A Feasibility Study on Developing Snow Melting Systems using CNT-Cement Composite (도로 융설체 개발을 위한 탄소나노튜브-시멘트 복합체 특성에 관한 실험적 연구)

  • Heo, Jinnyung;Park, Bumjin;Kim, Taehyeong
    • International Journal of Highway Engineering
    • /
    • v.15 no.2
    • /
    • pp.29-37
    • /
    • 2013
  • PURPOSES : This study aims to review the possibility of developing a road snow-melting system that can prevent slip accidents by maintaining a constant temperature of the winter roads and enhance performance of structures, including improvement of compressive strength by mixing carbon nanotube (hereafter referred to as CNT) with cement paste, the basic material. METHODS : To achieve the above purpose, an experiment was conducted by mixing power-type CNT and wrap-type CNT up to cement paste formulation by weight of 0.0wt%~4.1wt% in accordance with "KS L ISO 679(of cement strength test method)", and compressive strength was measured at 28 days of curing. In addition, the volume resistivity of the specimen was measured to test thermal and electrical characteristics, and the rate of temperature changes in specimen surface by power consumption was measured by passing electricity through the cross-sections of the specimen. Meanwhile, the criteria for checking the performance as a road snow-melting system was determined as volume resistivity of $100{\Omega}{\cdot}cm$ or less. RESULTS : A comparative analysis between specimen with 0wt% CNT content in plain status and specimen containing various types of CNTs was carried out. From its results, it was found that compressive strength increased approximately 19%, showing the highest rate when 0.2wt% of wrap-type CNT was contained, but volume resistivity of $100{\Omega}{\cdot}cm$ or less appeared only in specimens containing more than 0.2wt% CNT. In addition, it was observed that the surface temperature increased by $4.62^{\circ}C$ per minute on average in specimens containing 3.2wt% CNT. CONCLUSIONS : In this study, CNT was examined as an underlying material for a road snow-melting system, and the possibility of developing the road now-melting system was reviewed by conducting various experiments using CNT-Cement composites. From the experimental results, the specimens were found to have a superior performance when compared to the existing road snow-melting systems that place the heat transfer medium such as copper on the road. However, satisfactory strength performance were not obtained from the specimen containing CNT(2.0% or more) that functions as a heating element, which leads to the need for reviewing methods to increase the strength by using plasticizer or admixture.

Electrochemical Template Synthesis of Conducting Polymer Microstructures at Addressed Positions (템플레이트의 국소 위치에 형성된 전도성 고분자 미세구조물의 전기화학 합성)

  • Lee Seung Hyoun;Suh Su-Jeong;Yun Geum-Hee;Son Yongkeun
    • Journal of the Korean Electrochemical Society
    • /
    • v.7 no.2
    • /
    • pp.100-107
    • /
    • 2004
  • The nano or micro sized structures of conducting polymer had been prepared by synthesizing the desired polymer within the pores of template of nano or micro porous membrane filter. In this study, we had tried to fabricate conducting polymer microstructures on an electrode by using electrochemical deposition adopting template synthesis. Our attention was focused on two different things, attaching template on the electrode and fabricating microstructures only at limited areas of the electrode. A conducting polymer, PEDiTT (poly 3,4-ethylenedithi-athiophene) solution was blended with PVA(polyvinyl alcohol) solution and used as an conducting adhesive. After attaching template membrane, the electrode were immersed in 0.5M pyrrole in 0.1M KCI solution, and electrochemical polymerization was performed. The growth process of the microstructures studied by SEM. The electrochemical fabrication of conducting polymer was performed by using two-electrode system. A large working electrode and a micro scale disc electrode were used for the confined area synthesis. Polymerization potential was 4V in an electrolytic solution made of KCI in deionized water. The optimum polymerization conditions were, i.e. (4V/100sec) for $250{\mu}m$ electrode and (6V/30 sec) for $10{\mu}m$ electrode.

Improved Cycle Life and Storage Performance in High-Voltage Operated Li2MnO3-LiMO2(M=Ni, Co, Mn)/Graphite Cell System by Fluorine Compounds as Main Electrolyte Solvent (고전압 구동 Li2MnO3-LiMO2(M=Ni, Co, Mn)/graphite 시스템에서의 전지 수명 및 고온 방치 특성 향상에 효과적인 플루오로 화합물계 전해액에 대한 연구)

  • Yu, Jung-Yi;Shin, Woocheol;Lee, Byong-Gon
    • Journal of the Korean Electrochemical Society
    • /
    • v.16 no.3
    • /
    • pp.162-168
    • /
    • 2013
  • $Li_2MnO_3-LiMO_2$(M=Ni, Co, Mn) nano-composite is a promising cathode material for xEV application due to its high theoretic capacity. However high voltage operating system of $Li_2MnO_3-LiMO_2$(M=Ni, Co, Mn) has worked as a hurdle in its application because of the inherent demerits, such as cycle life degradation and gas evolution. In order to enhance cell performance of $Li_2MnO_3-LiMO_2$(M=Ni, Co, Mn)/graphite cell, we examined electrolyte mainly composed of FEC, fluroalkyl ether and $LiPF_6$ (F-based EL). F-based EL showed much better discharging retention ratio than 1.3 M $LiPF_6$ EC/EMC/DMC (3/4/3, v/v/v) (STD). Furthermore gas evolution, especially CO and $CO_2$ during $60^{\circ}C$ storage for 30 days was dramatically reduced owing to thermal stable SEI formation effect of F-based EL.

Effects of Anticancer Drug Delivery based on Microbubble and Microbubble-Nanoparticle Complex using Low-Intensity Focused Ultrasound in Breast Cancer Animal Model (유방암 동물모델에서의 저강도 집속초음파를 이용한 마이크로버블 및 마이크로버블-나노물질 복합체 기반 항암제 전달 효율 검증)

  • Baek, Hee Gyu;Ha, Shin-Woo;Huh, Hyungkyu;Jung, Byeongjin;Han, Mun;Moon, Hyungwon;Kim, Sangkyun;Lee, Hak Jong;Park, Juyoung
    • Journal of Biomedical Engineering Research
    • /
    • v.40 no.2
    • /
    • pp.39-47
    • /
    • 2019
  • Ultrasound sonication along with microbubble (MB) could enhance drug delivery to promote the absorption of anticancer drugs into cancers in a noninvasive and targeted manners. In this study, we verify the acute drug delivery enhancement (within an hour) of two representative focused ultrasound driven drug delivery enhancement methods (MB and Doxorubicin-coated Nanoparticle complex (MB-NP) based). Experiments were conducted using in vivo mouse model with MDA-MB-231 breast cancer cell line. Ultrasound generated by single-element 1 MHz focused ultrasound transducer was delivered in pulsed sonication consisted of 0.125 msec bursts at a pulse repetition frequency of 2 Hz for 20 seconds without a significant increase in local temperature (less than $0.1^{\circ}C$) or hemorrhage. Doxorubicin concentrations in tumors were improved by 1.97 times in the case of MB-NP, and 1.98 times by using Doxorubicin and MB separately. These results indicate anticancer drug delivery based on MB and MB-NP can significantly improve the effect of anticancer drugs delivered to tumors in a short time period by using low-intensity focused ultrasound.

Review on the Recent Membrane Technologies for Pressure Retarded Osmosis (압력지연삼투를 위한 최근 분리막 기술에 관한 총설)

  • Jeon, Sungsu;Patel, Rajkumar;Kim, Jong Hak
    • Membrane Journal
    • /
    • v.31 no.4
    • /
    • pp.253-261
    • /
    • 2021
  • Solutions to water pollution, global warming, and climate change have been currently discussed. Pressure retarded osmosis (PRO) using a difference in salt concentration between two fluids is proposed to meet the demand for clean water and produce eco-friendly energy. Although PRO has been researched continuously, it has not been commercialized yet due to limitations such as lack of technology and the high price of membranes. Meanwhile, the membrane is one of the most significant parts of the PRO engine and salinity gradient power (SGP) technology. Research continues to technologically develop graphene oxide membranes and nanocomposite membranes used in salinity gradient power generation. Studies on efficient membranes, solvents, and solutes are active to enable high energy efficiency of the osmotic heat engine even at low temperatures of waste. Studies have been conducted on reducing internal concentration polarization and increasing power density by using membranes with balanced permeability and selectivity. In this review, dealing with these studies, we discuss the types of PRO membranes, theoretical modeling of technologies through efficient membranes, and other technologies to develop the process efficiency.