• Title/Summary/Keyword: 나노재료

Search Result 2,806, Processing Time 0.034 seconds

Thermal and Mechanical Properties of Epoxy Composition Containing Modified Halosite Nanotubes with Silane Coupling Agent (실란 커플링제를 이용하여 개질한 할로이사이트 나노튜브가 함유된 에폭시 조성물의 열적·기계적 물성)

  • Kim, TaeHee;Lim, Choong-Sun;Kim, Jin Chul;Seo, Bongkuk
    • Journal of Adhesion and Interface
    • /
    • v.18 no.2
    • /
    • pp.68-74
    • /
    • 2017
  • Epoxy resins are widely used in various fields due to their excellent thermal, mechanical and chemical properties. In order to improve the mechanical properties of the epoxy composition after curing, various materials are mixed in the epoxy resin. Among the nano materials, CNT is the most widely used. However, CNT has limitations in terms of manufacturing process and manufacturing cost. Therefore, there is a growing interest in naturally occurring HNTs having similar structure to that of CNT. In this study, the thermal and mechanical properties of epoxy compositions containing HNTs treated with two types of silane compounds were investigated. The mechanical properties of silane-treated HNT were measured by using a universal testing machine. The differential scanning calorimeter (DSC), thermogravimetric analysis (TGA), and thermomechanical analysis (TMA) were used to measure thermal properties. As a result of the above tests, when the HNT was surface-treated with aminosilane, the tensile strength of the epoxy composition containing the HNT was higher than that of the epoxy composition containing epoxy silane treated HNT. The linear thermal expansion coefficients (CTE) obtained from the thermomechanical analysis of the two epoxy compositions for the comparison of dimensional stability showed that the HNT composition treated with aminosilane showed a lower value of CTE than that of epoxy composition including the pristine HNT.

Improvement Effect and Electrical Characteristics of Soft Ground with Plastic Electrode Spacing (전극간 거리에 따른 연약지반의 지반개량 효과와 전기적 특성)

  • Byeon, Inseong;Kang, Hongsig;Sun, Seokyoun;Han, Jeonghoon;Ahn, Kwangkuk
    • Journal of the Korean GEO-environmental Society
    • /
    • v.17 no.1
    • /
    • pp.13-19
    • /
    • 2016
  • Soft ground stabilization is needed to construct large civil facilities on the soft clay ground. Pre-loading method, which is accelerating consolidation method, is generally used to stabilize the soft ground. However, pre-loading method is required long construction period and quantities of fill material. Therefore, electro-osmosis method is used to replace pre-loading method for stabilizing the soft ground. Electro-osmosis method is disadvantageous in constructive and economic aspects because it is needed a metallic electrode. So, in order to solve the those disadvantages, plastic electrode was developed to replace metallic electrode. Plastic electrode, which is made by using nano-technology on existing Plastic Drain Board (PDB), was used to supply the electric power. In this study, therefore, the model test was conducted to confirm the effect of improvement and electrical characteristics of soft ground by spacing of plastic electrode. The result shows that the effect of improvement of soft ground was decreased up to 45% by increasing electrode spacing and electrical characteristics on the soft ground were influenced by consolidation settlement with electrode spacing.

Synthesis of Nanoscale Sn-Pb Alloy Powders by Electrical Explosion of Wire (전기선폭발법을 이용한 Sn-Pb 나노분말의 합성)

  • ;;;;A. P. Ilyin;D. V. Tichonov
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2003.04a
    • /
    • pp.35-35
    • /
    • 2003
  • )를 금속와이어에 인가하면 저항발열에 의해 와이어가 미세한 입자나 금속증기상태로 폭발하는 현상을 이용한 것으로 기상합성법에 속한다고 할 수 있다. 선폭법은 다른 제조법에 비해 공정이 간단하여 생산비용이 저렴하며, 원재료의 조성을 갖는 분말의 합성과 금속간화합물, 융점차이가 나는 재료의 합금화 등이 가능하다. 인가에너지의 크기와 폭발 시 분위기를 제어함으로써 분말의 평균크기와 분포 제어 또한 가능하다. 본 연구는 러시아의 우수한 기초기술을 바탕으로 Pb-Sn계 합금은 전기폭발법으로 극미세분말을 제조하였으며, 분말의 형상, 상 화학조성의 변화를 조사하였다. 본 실험에 사용된 Sn-Pb계(All-Union State Standard 1499-70, 0.53mm)합금와이어는 자동시스템(1-0.6Hz)에 의해 챔버안으로 공급되었다. 이 때 임계폭발 와이어 길이는 50-80nm으로 실험을 행하였다. 챔버 압력은 1.4~2.0atm으로 유지하였다. 제조된 분말의 특성은 XRD, XRPES, SEM등을 이용하여 분말의 형상과 상, 화학조성, 표면분석을 행하였으며 DSC, TGA, BET분석을 통하여 온도변화에 따른 금속분말의 열량변화, 질량변화, 비표면적을 측정하였다. 제조된 Sn-Pb계 분말은 모두 평균 입도 117nm~220nm의 구형형상이었다. 이때 합금분말의 조성은 51.17~63.21 at%Sn, 35.47~46.37 at%Pb로 나타났다. 와이어에 인가되는 비에너지(W/Wc)가 감소된에 EK라 표면층의 Pb함량이 증가함을 보였다. 이는 와이어 내부 저항의 감소로 인한 공정시간의 지연과 Sn, Pb의 확산계수 차이에 의한 것으로 사료된다. 열분석 결과, Sn~Pb계 화합물의 융점은 167~$169^{\circ}C$로 관찰되었으며, $10^{\circ}C$/min로 $920^{\circ}C$까지 승은 하였을 때 17.1~18 wt%의 질량증가를 보였다.TEX>계 나노복합분말이 얻어짐을 알 수 있었다. 이 때 X션 회절피크의 line broadening으로부터 복합분말의 Fe 명균 결정립 크기는 24nm로 초미세 결정럽의 분말합금이었다. 포화자화값은 볼밀처리에 따라 점점 증가하여 MA 30시간에는 20.3emu/g로 포화됨을 알 수 있었다. 또한 보자력 Hc는 MA초기단계에 350e로 매우 낮으나 30시간 후에는 Hc값이 2600e로 매우 큰 값을 나타내었다. 이것은 환원반응결과 초기에 생성된 Fe의 결정립이 비교적 크고 결정결함이 적으나 볼밀처리를 30시간까지 행하면 Fe 결정렵의 미세화 빛 strain 증가로 magnetic hardening이 일어나기 때문인 것으로 사료된다.길이가 50, 30cm인 압출재를 제조하였다. 열간압출한 후의 미세조직을 광학현미경으로 압출방향에 평행한 방향과 수직방향으로 관찰하였고, 열간 압출재 이방성을 검토하기 위하여 X선 회절분석을 실실하여 결정방위를 확인하였다. 전기 비저항 및 Seebeck 계수 측정을 위하여 각각 2$\times$2$\times$10$mm^3$ 그리고 5$\times$5$\times$10TEX>$mm^3$ 크기의 시편을 준비하였다.준비하였다.전류를 구성하는 주요 입자의 에너지 영역(75~l13keV)에서 가장 높은(0.80) 상관계수를 기록했다. 넷째, 회복기 중에 일어나는 입자들의 유입은 자기폭풍의 지속시간을 연장시키는 경향을 보이며 큰 자기폭풍일수록 현저했다. 주상에서 관측된 이러한 특성은 서브스톰 확장기 활동이 자기폭풍의 발달과 밀접한 관계가 있음을 시사한다.se that were all low in two aspects, named "the Nonsignificant group". And the issues were high risk perception in general setting and lo

  • PDF

Evaluation of Physical Properties of Resin Containing Zinc Nanoparticle. (아연나노입자함유 교정용 레진의 물리적 특성 평가)

  • Jo, Jeong-Ki
    • Journal of Digital Convergence
    • /
    • v.17 no.10
    • /
    • pp.373-379
    • /
    • 2019
  • Polymethyl methacrylate (PMMA), a self-polymerizing resin for removable orthodontic devices, has been used as a dental orthodontic device for many years because of its advantages such as color stability, volume stability, and tissue compatibility. However, such a removable orthodontic device has a disadvantage that the longer the use in the oral cavity due to the low strength of the PMMA fracture of the orthodontic device resin in use. In this study, zinc nanoparticles (ZNP) were mixed with orthodontic PMMA to introduce strength effect. Rectangular samples ($1.4{\times}3.0{\times}19.0mm$) of orthodontic PMMA (0, 0.5, 1.0, 2.0 and 4.0%) containing ZNP were prepared. The finished specimen was tested for three-point bending strength at a speed of 1 mm / min, and the Vickers hardness was measured three times using a hardness tester. The surface roughness was measured with a surface roughness. As a result, the 3-point bending strength did not change significantly (p>0.05). Surface energy increased significantly. As a result, we successfully synthesized ZNP in this study and prepared the dispersed resin specimen for calibration. It will be possible to develop high-density dental orthodontic resins.

Flame Retardant and Thermal Properties of Wood-based Composite Boards Prepared by Graphene Nanoplatelet/Reused Phenolic Foam (그래핀나노플레이트렛 및 재활용 페놀폼으로 제조된 목재기반 복합보드의 난연 및 열적 특성)

  • Han, Jeong-In;Kim, Min-Ji;Song, Eun Ji;Kim, Kyung Hoon;In, Se-Jin;Lee, Young-Seak
    • Applied Chemistry for Engineering
    • /
    • v.30 no.3
    • /
    • pp.371-378
    • /
    • 2019
  • Graphene nanoplatelet (GnP)/reused phenolic foam (re-PF)/wood composite boards were fabricated with different GnP content as 5, 10 and 20 w/w% to investigate the effect of GnP on thermal- and flame retardant properties of wood-based composite boards. The thermal- and flame retardant properties of fabricated composite boards were investigated by thermogravimetric analysis (TGA) and limiting oxygen index (LOI), respectively. The thermal stability of the composite boards increased proportionally with respect to the amount of GnP, and the char yield of these boards increased up to 22% compared to that of the pure wood board. The LOI values of composite boards were about 4.8~7.8% higher than those of using pure wood boards. It was also confirmed that the flame retardant properties of composite boards were remarkably improved by the addition of re-PF and GnP. These results were because of the fact that the re-PF and GnP with a high thermal stability delayed the initial thermal degradation temperature of composite boards and made their char layers denser and thicker which led the overall combustion delay effect of the composite board. Especially, GnP as a carbon-based material, facilitated the char layer formation and increased remarkedly the char yield, which showed higher effect on flame retardant properties than those of the re-PF.

Rheological Properties of Cement Paste Mixed with Aqueously Dispersed Single-Walled Carbon Nanotubes (Single-Walled 탄소나노튜브 수용액 혼입 시멘트 페이스트의 유변학적 특성)

  • Kim, Ji-Hyun;Chung, Chul-Woo
    • Journal of the Korea Institute of Building Construction
    • /
    • v.19 no.2
    • /
    • pp.113-121
    • /
    • 2019
  • Single walled carbon nanotube (SWCNT) has been used as a material for reinforcing various advanced materials because it has superior mechanical properties. However, pure SWCNT that does not have any functional group has a hydrophobic character, and exists as bundles due to the strong Van der Waals attraction between each SWCNT. Due to these reasons, it is very difficult to disperse SWCNTs in the water. In this work, in order to use SWCNT for production of cementitious composites, SWCNT was first dispersed in water to make an aqueous solution. Sodium deoxycholate (DOC) and Sodium dodecyl sulfate (SDS) were chosen as surfactants, and the dosage of DOC and SDS were 2wt% and 1wt%, respectively. Sonication and ultracentrifugation were applied to separate each SWCNT and impurities. Using such processed SWCNT solutions, cement paste was prepared and its shear stress vs. strain rate relationship was studied. The yield stress and plastic viscosity of cement paste were obtained using Bingham model. According to the results in this work, cement pastes made with DOC and SDS showed similar rheological behavior to that of air entrained cement paste. While cement paste made with DOC 2 wt.% SWCNT solution showed similar rheological behavior to that of plain cement paste, cement paste made with SDS 1 wt.% SWCNT solution showed different rheological behavior showing much less yield stress than plain cement paste.

A Review of Structural Batteries with Carbon Fibers (탄소섬유를 활용한 구조용 배터리 연구 동향)

  • Kwon, Dong-Jun;Nam, Sang Yong
    • Applied Chemistry for Engineering
    • /
    • v.32 no.4
    • /
    • pp.361-370
    • /
    • 2021
  • Carbon fiber reinforced polymer (CFRP) is one of the composite materials, which has a unique property that is lightweight but strong. The CFRPs are widely used in various industries where their unique characteristics are required. In particular, electric and unmanned aerial vehicles critically need lightweight parts and bodies with sufficient mechanical strengths. Vehicles using the battery as a power source should simultaneously meet two requirements that the battery has to be safely protected. The vehicle should be light of increasing the mileage. The CFRP has considered as the one that satisfies the requirements and is widely used as battery housing and other vehicle parts. On the other hand, in the battery area, carbon fibers are intensively tested as battery components such as electrodes and/or current collectors. Furthermore, using carbon fibers as both structure reinforcements and battery components to build a structural battery is intensively investigated in Sweden and the USA. This mini-review encompasses recent research trends that cover the classification of structural batteries in terms of functionality of carbon fibers and issues and efforts in the battery and discusses the prospect of structural batteries.

Development of CNT Coating Process using Argon Atmospheric Plasma (아르곤 상압플라즈마를 이용한 CNT 코팅 공정 기술 개발)

  • Kim, Kyoung-Bo;Lee, Jongpil;Kim, Moojin
    • Journal of Industrial Convergence
    • /
    • v.20 no.10
    • /
    • pp.33-38
    • /
    • 2022
  • In this paper, a simple method of forming a solution-based carbon nanotube (CNT) for use as a conductive material for electronic devices was studied. The CNT thin film coating was performed on the glass by applying the spin coating method and the argon atmospheric pressure plasma process. In order to observe changes in electrical and physical properties according to the number of coatings, samples formed in the same manner from times 1 to 5 were prepared, and surface shape, reflectance, transmittance, absorbance, and sheet resistance were measured for each sample. As the number of coatings increased, the transmittance decreased, and the reflectance and absorptivity increased in the entire measurement wavelength range. Also, as the wavelength decreases, the transmittance decreases, and the reflectance and absorption increase. In the case of electrical properties, it was confirmed that the conductivity was significantly improved when the second coating was applied. In conclusion, in order to replace CNT with a transparent electrode, it is necessary to consider the number of coatings in consideration of reflectivity and electrical conductivity together, and it can be seen that 2 times is optimal.

Comparison on Accuracy of Static and Dynamic Contact Angle Methods for Evaluating Interfacial Properties of Composites (복합재료의 계면특성 평가를 위한 접촉각 방법의 정확도 비교)

  • Kwon, Dong-Jun;Kim, Jong-Hyun;Park, Joung-Man
    • Journal of Adhesion and Interface
    • /
    • v.23 no.3
    • /
    • pp.87-93
    • /
    • 2022
  • To analyze the interfacial property between the fiber and the matrix, work of adhesion was used generally that was calculated by surface energies. In this paper, it was determined what types of contact angle measurement methods were more accurate between static and dynamic contact angle measurements. 4 types of glass fiber and epoxy resin were used each other to measure the contact angle. The contact angle was measured using two types, static and dynamic contact angle methods, and work of adhesion, Wa was calculated to compare interfacial properties. The interfacial property was evaluated using microdroplet pull-out test. Generally, the interfacial property was proportional to work of adhesion. In the case of static contact angle, however, work of adhesion was not consistent with interfacial property. It is because that dynamic contact angle measurement comparing to static contact angle could delete the error due to microdroplet size to minimize the surface area as well as the meniscus measuring error.

Defect Inspection and Physical-parameter Measurement for Silicon Carbide Large-aperture Optical Satellite Telescope Mirrors Made by the Liquid-silicon Infiltration Method (액상 실리콘 침투법으로 제작된 대구경 위성 망원경용 SiC 반사경의 결함 검사와 물성 계수 측정)

  • Bae, Jong In;Kim, Jeong Won;Lee, Haeng Bok;Kim, Myung-Whun
    • Korean Journal of Optics and Photonics
    • /
    • v.33 no.5
    • /
    • pp.218-229
    • /
    • 2022
  • We have investigated reliable inspection methods for finding the defects generated during the manufacturing process of lightweight, large-aperture satellite telescope mirrors using silicon carbide, and we have measured the basic physical properties of the mirrors. We applied the advanced ceramic material (ACM) method, a combined method using liquid-silicon penetration sintering and chemical vapor deposition for the carbon molded body, to manufacture four SiC mirrors of different sizes and shapes. We have provided the defect standards for the reflectors systematically by classifying the defects according to the size and shape of the mirrors, and have suggested effective nondestructive methods for mirror surface inspection and internal defect detection. In addition, we have analyzed the measurements of 14 physical parameters (including density, modulus of elasticity, specific heat, and heat-transfer coefficient) that are required to design the mirrors and to predict the mechanical and thermal stability of the final products. In particular, we have studied the detailed measurement methods and results for the elastic modulus, thermal expansion coefficient, and flexural strength to improve the reliability of mechanical property tests.