• 제목/요약/키워드: 나노입자 밀도

검색결과 110건 처리시간 0.027초

저온 플라즈마 반응기에서의 수정충돌주파수를 이용한 실리콘 나노 입자 형성 모델링

  • 김영석;김동빈;김형우;김태성
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2014년도 제46회 동계 정기학술대회 초록집
    • /
    • pp.217.1-217.1
    • /
    • 2014
  • 반도체 및 디스플레이 산업은 많은 공정들에서 저온 플라즈마 반응을 이용한다. 특히 소자 제작을 위한 실리콘 박막의 증착은 저온 플라즈마 공정의 주요 공정이다. 하지만 실리콘 박막을 합성하는데 있어서 저온 플라즈마에서 형성되는 실리콘 나노 입자는, 오염입자로써 박막의 특성을 악화시켜 소자생산 수율을 악화시키는 주요 원인이 되고 있다. 따라서 플라즈마에서 입자 형성의 원인이 되는 화학반응 및 입자들의 성장 매커니즘에 대한 연구는, 1980년대 플라즈마 공정에서 입자 합성이 보고된 이래 공정의 최적화를 위해 꾸준히 연구되어왔다. 이러한 매커니즘의 연구들은, 플라즈마 화학반응에 의해 실리콘 입자 핵을 만들어 내는 과정과 입자들이 충돌에 의해 성장해가는 과정으로 나눠진다. 플라즈마 화학 반응 과정은 아레니우스 방정식에 의해 정의된 반응계수를 이용하여 플라즈마 내 전자와 이온, 중성 화학종들이 전자 온도와 전자 밀도, 챔버 온도 등에 의해 결정되는 현상을 모사한다. 또한 이 과정에서 실리콘을 포함하는 화학종들의 반응에 의해 핵이 생성 되가는 양상을 모사한다. 생성된 핵은 충돌에 의해 입자가 성장해 가는 과정의 가장 작은 입자로써 이용된다. 입자들이 성장해가는 과정은 입자들이 서로 충돌하면서 다양한 입경의 입자로 분화되어가는 현상을 모사한다. 이 과정에 의해 다양한 입경분포로 분화된 입자들은 플라즈마 내 전자에 의해 하전되며, 이러한 하전 양상은 입경에 따라 다른 분포를 보인다. 본 연구에서는 입자의 하전 분포를 고려하여, 입자들의 성장의 주요 원인인 입자간의 충돌을 대표하는 충돌주파수를 수정하는 방식을 채택하여 보다 정밀한 입자 성장 양상을 모델링하였다. Inductively coupled plasma (ICP) 타입의 저온 플라즈마 반응기에서 합성된 입자들을 Particle Beam Mass Spectrometer (PBMS)와 Scanning Electron Microscope (SEM)를 이용하여 입경분포를 측정한 데이터와 모델링에 의해 계산된 결과를 비교하여 본 모델의 유효성을 검증하였다. 검증을 위해 100~300 mtorr의 챔버 압력 조건과 100~350 W의 입력 전력 조건들을 달리하며 측정한 결과와 계산한 데이터를 조건별로 비교하였다.

  • PDF

생체 적합한 나노입자와 계면화학 (Surface Chemistry in Biocompatible Nanocolloidal Particles)

  • 김종득;정재현
    • 대한화장품학회지
    • /
    • 제30권3호
    • /
    • pp.295-305
    • /
    • 2004
  • 콜로이드와 계면화학은 표면적과 표면에너지의 학문이다. 계면상의 위치에 따라서 분자밀도, 분자간의 상호작용력, 분자 배향성 그리고 반응성이 달라진다는 것은 흥미있는 주제가 되고 있다. 이러한 계면에너지가 중요하게 작용하는 시스템으로서 회합체, 에멀젼, 입자분산, 거품, 2차원적 표면이나 필름을 들 수 있다. 특히 나노 입자에 관련된 생체 적합성 재료를 사용하여 약물 전달체와 화장품 나노 소재로 이용하는데 관심이 고조되고 있다. 나노 입자는 수 nm에서 수백 nm 크기를 갖는, 넓은 표면적을 가진 콜로이드 상의 불균일 분산 입자의 일종이다. 지금까지 나노 입자의 제조, 특성 규명, 나노입자를 이용한 약물 봉입에 관한 연구가 활발히 이루어져 약물 전달체로서의 가능성이 충분히 입증되었다. 또한 난용성분 가용화 나노소재, 피부 흡수 증진용 나노소재, 자외선 차단용 나노소재, 안정화용 나노소재, 서방형 나노소재 등의 화장품 연구에 생체적합 나노전달체를 이용한 예가 보고되었다. 나노/마이크로 입자 시스템은 제조방법과 형태에 따라 나노/마이크로 스피어, 나노/마이크로 캡슐, 나노/마이크로 에멀젼, 폴리머 마이셀, 리포좀 등으로 구분된다. 수용액상에서 자기 회합체를 구성하는 나노수준의 폴리머 마이셀입자, 고농도, 고활성 물질에 대하여 농도 및 활성을 일정하게 제어할 수 있는 나노/마이크로 캡슐, 단일 이중층 또는 다층(100~800 nm)을 형성하여 여러 생리 환성 물질의 전달체로 이용되는 리포솜(liposome)에 대하여 제조방법과 산업의 응용에 대해 소개하였다.

실란처리에 따른 에폭시-나노콤포지트의 가교밀도 및 동적기계적특성 연구 (Crosslink Density and Dynamic Mechanical Characteristics of Epoxy-Nanocomposites according to Silane Treatment)

  • 박재준;김종민;이대균;백관현
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2009년도 하계학술대회 논문집
    • /
    • pp.255-255
    • /
    • 2009
  • 에폭시수지에 유기화된 층상실리케이트 나노입자를 충진하여 에폭시-나노콤포지트 제조하였다. 에폭시-나노콤포지트는 열적, 기계적 특성이 매우 우수한 콤포지트로서 실란처리에 따른 동적 기계적 특성 (Dynamic Mechanical Analysis)과 가교밀도와의 관계를 조사였다. 나노입자의 충진함량은 3wt%로 충진하였고, Silane Coupling Agent는 에폭시실란으로서 3-Glycidoxypropyltrimethoxysilane이 사용되었다. 실란처리함량은 0.5, 1, 1.5 wt%로서 적용하여 제조된 샘플이다. DMA Storage modulus특성으로 glass state($40^{\circ}C$)에서는 원형에폭시의 경우 2054, 실란처리되지 않은 나노콤포지트 3967, 실란처리된 나노콤포지트는 4867MPa을 나타내었다. rubbery state($140^{\circ}C$)에서는 원형에폭시의 경우 1458, 실란처리되지 않은 경우 2506, 실란처리된 나노콤포지트는 2638MPa을 나타내었다. 또한 실란처리함량에따른 가교밀도변화는 0.5wt%에서는 0.803, 1 wt%에서는 0.671, 1.5wt%에서는 $0.762[mol/cm^3]$이로서 에폭시원형과 실란미처리된 나노콤포지트 그리고 실란처리된 나노콤포지트순으로 glass state와 rubbery state에서의 특성이 크게 향상된 결과를 얻었다. 이는 실란이 고분자와 무기물사이의 결합력을 강화시켜 열적기계적 특성향상을 가져 오는 것으로 볼 수 있다. 가교밀도의 실란처리함량의 변화에 있어서 과량의 함량 첨가는 에폭시와 나노층상실리게이트 표면처리된 잔유량이 오히려 특성의 저하를 가져오는 것으로 볼 수 있다.

  • PDF

Kapitza 열저항이 존재하는 나노복합재의 열전도 특성 예측을 위한 순차적 멀티스케일 균질화 해석기법에 관한 연구 (A Study on the Sequential Multiscale Homogenization Method to Predict the Thermal Conductivity of Polymer Nanocomposites with Kapitza Thermal Resistance)

  • 신현성;양승화;유수영;장성민;조맹효
    • 한국전산구조공학회논문집
    • /
    • 제25권4호
    • /
    • pp.315-321
    • /
    • 2012
  • 본 연구에서는 분자동역학 전산모사와 유한요소해석 기반의 균질화 기법을 통해 나노복합재의 열전도 특성을 정확하고 효율적으로 예측할 수 있는 순차적 멀티스케일 균질화 해석기법을 제안하였다. 나노입자의 크기효과가 나노복합재의 유효 열전도 특성에 미치는 영향을 조사하기 위해 크기가 다른 구형 나노입자가 첨가된 나노복합재의 열전도 계수를 분자동역학 전산모사를 통해 예측했고, 그 결과 나노입자의 크기가 작아질수록 계면에서의 Kapitza열저항에 의해 나노복합재의 열전도 계수가 점차 감소하는 것으로 나타났다. 이러한 나노입자의 크기효과를 균질화 해석모델을 통해 정확하게 묘사하기 위해 Kapitza 열저항에 의한 계면에서의 온도 불연속 구간과 고분자 기지가 높은 밀도를 가지며 흡착되는 유효계면을 추가적인 상으로 도입하여 나노복합재를 입자, Kapitza 계면, 유효계면, 기지로 구성된 4상의 연속체 구조로 모델링하였다. 이후 순차적 멀티스케일 균질화 해석기법을 통해 유효계면의 열전도 계수를 나노복합재의 열전도 계수로부터 역으로 예측했으며, 이를 입자의 반경에 대한 함수로 근사하였다. 근사 함수를 토대로 다양한 입자 체적분율과 반경에 대한 나노복합재의 유효 열전도 특성을 예측하였으며, 유효계면에 대한 매개변수 연구를 수행하였다.

유연소재 천 기반의 슈퍼캐패시터 저장체의 전기화학적 성능 향상

  • 윤태광;오민섭;;현승민;한승민
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2013년도 제44회 동계 정기학술대회 초록집
    • /
    • pp.697-698
    • /
    • 2013
  • 최근에 유연한 성질을 갖는 전자기기들의 수요가 증가하면서, 그에 따라서 유연 전자기기를 뒷받침 해줄 수 있는 에너지 저장체의 유연한 성질도 중요성이 점점 부각되고 있으며 많은 연구가 진행되고 있다. 유연한 에너지 저장체의 많은 연구들이 유연한 금속 박막이나 특수 공정처리가 필요한 고분자를 이용하고 있으나, 대부분의 유연 에너지 소자들은 에너지 저장체의 성능에 비해 고온과 산 약품과 같은 환경이 필요하며, 비용과 시간이 많이 소모되고 있다. 그에 반해 섬유는 앞에서와 같이 특수 공정 처리가 따로 필요하지 않으며 상온에서도 손 쉽게 이용 가능하며, 신축성이 뛰어난 장점이 있기 때문에 효율적, 비용적으로 유연한 에너지 저장체에 유리한 소재이다. 몸에 해로운 산과 같은 약품처리의 필요도 없으며, 용매를 흡수하는 능력이 뛰어나기 때문에 용매를 이용한 도포 방법을 사용하면 다양한 물질을 폭넓게 적용 가능하다. 그리고 적용 분야에 맞춰서 섬유의 종류를 조절하면 다양한 성질을 갖는 천 기반의 에너지 저장체가 형성되며, 면 섬유가 수소 결합과 높은 반데르 발스 결합에 의해 탄소나노튜브와 결합하여 높은 에너지 밀도를 갖는 에너지 저장체를 형성하는 것을 분석한 논문들도 보고되고 있다. 면 섬유의 특수한 성질을 이용하여 에너지 저장체를 제작하고 이를 확인하기 위해서 일반 합성 섬유인 polyester와 면 섬유를 비교 제작하였으며, 용매의 형태로 손쉽게 도포 가능한 물질은 탄소 계열의 활물질들이며, 탄소 나노 튜브나 그래핀 등이 분산된 용액을 이용해 천에 도포 가능하다. 탄소 계열의 활물질들은 대표적인 슈퍼캐패시터 물질이며, 천에 도포를 함으로써 천 기반의 슈퍼캐패시터를 제작하였다. 일반 합성 섬유 polyester와 CNT를 결합한 형태의 전극은 최대 에너지 축전 용량(Maximum specific capacitance)이 53.6 F/g으로 나타났으며, 면 섬유와 CNT를 결합한 형태의 전극은 최대 에너지 축전 용량이 122.1 F/g으로 나타났다. 따라서 면 섬유에서 높은 에너지 저장 능력을 보이는 것을 실험적으로 확인하였으며, 에너지 저장 능력이 뛰어난 면 섬유를 다음 전극 디자인에서도 일률적으로 적용하였다. 슈도캐패시터의 대표적 물질인 금속 산화물인 망간 산화물(MnO2)을 3전극 도금 시스템을 이용하여 에너지 축전 용량과 에너지 밀도를 올리는 전극을 제작하였다. 특히 망간 산화물의 형태는 표면적을 극대화하기 위해서 평균 지름은 200~300 nm 정도 되는 나노 입자의 형태로 제작하였다. 그 결과, 확연하게 에너지 축전 용량이 향상되었으며, 최대 에너지 축전 용량은 282.0 F/g, 에너지전력 밀도는 14.2 Wh/kg으로 나타나서 금속 산화물의 형태가 주는 효과를 확인할 수 있었다. 하지만 나노 입자의 형태로 제작된 금속 산화물은 문제점이 발생하였다. 금속 산화물의 전기 전도성이 매우 낮기 때문에, 전기 전도성에 비례해서 전력 밀도의 값이 표현되는데, 전기 전도성이 급격히 감소하기 때문에 전력 밀도도 급격한 감소가 나타난다. 다음과 같이 전기 전도성 물질을 첨가하는 방법은 추가의 공정이 필요한 단점이 있지만 오직 기계적인 인장응력만을 가해서 에너지 밀도와 전력 밀도를 증가시키는 전극을 제작하였다. 인장응력을 섬유 기반의 전극에 가했을 시에 가닥들간의 접촉 증가와 CNT가 정렬되면서 특정 변형률(strain) 이전에서는 전기 전도성이 최대 50% 이상 증가하는 것을 확인할 수 있었으며, 선행 연구에서 보고되었다. 이를 이용해서 전기 전도성과 직결되는 전력 밀도의 양도 증가시키고 에너지 밀도의 증가 여부까지 확인한 결과 인장을 가하기 전 면 섬유의 전력 밀도와 에너지 밀도는 6.4 kW/kg and 6.1 Wh/kg으로 나타났으나 30% 변형 인장 후에는11.4 kW/kg과 7.1 Wh/kg으로 나타났다. 그리고 망간 산화물을 첨가한 전극 역시 4.9 kW/kg과 14.2 Wh/kg으로 나타났었으나 인장 이후 전력 밀도는 14.2 kW/kg, 에너지 밀도는 17.6 Wh/kg으로 확연하게 증가한 것을 확인하였다.

  • PDF

고에너지 볼 밀을 이용한 나노 활석의 형성 및 입도 분석 (Particle Size Analysis of Nano-sized Talc Prepared by Mechanical Milling Using High-energy Ball Mill)

  • 김진우;이범한;김진철;김현나
    • 한국광물학회지
    • /
    • 제31권1호
    • /
    • pp.47-55
    • /
    • 2018
  • 활석은 T-O-T 구조의 함수 마그네슘 층상규산염 광물로서, 화학적 안정성과 흡착성 등의 특성을 가지고 있어 다양한 산업분야에서 첨가제, 코팅제 등으로 활용되어 왔다. 최근 나노 복합체의 안정성 향상을 위한 첨가제로서 활석 나노입자가 각광받고 있다. 본 연구에서는 고에너지 볼 밀을 이용하여 기계적인 방법으로 활석 나노입자를 형성하고, 분쇄시간에 따른 입자크기 및 결정도의 변화를 알아보고자 하였다. X-선 회절 분석 결과, 분쇄가 진행됨에 따라 활석의 피크 폭이 점진적으로 증가하여 720분 분쇄 후, 활석은 비정질에 가까운 X-선 회절패턴을 보여준다. 레이저회절 입도 분석 결과, 약 $12{\mu}m$이었던 활석의 입도는 분쇄가 진행됨에 따라 약 $0.45{\mu}m$까지 감소하였으나, 120분 이상 분쇄를 진행하여도 뚜렷한 입도의 감소가 관찰되지 않았다. 반면, BET 비표면적은 분쇄 720분까지 꾸준히 증가하여, 분쇄에 따른 입도 또는 형태의 변화가 지속적으로 일어남을 지시한다. 주사전자현미경 및 투과전자현미경 관찰 결과, 720분 분쇄 후 약 100~300 nm 내외의 층상형 입자들이 마이크로 스케일의 응집체로 존재함을 확인하였다. 이와 같은 결과는 분쇄시간이 증가함에 따라 활석의 입자크기 및 형태는 지속적으로 변화하지만, 나노입자의 특성상 재응집이 일어나 마이크로 크기의 응집체를 형성하고 있음을 지시한다. 또한 활석의 분쇄에서 판의 크기, 즉 a축, b축 방향의 길이는 감소 한계가 존재하며, 분쇄가 진행될수록 판의 두께, 즉 c축 방향의 길이 감소가 주된 분쇄 메커니즘으로 생각된다. 본 연구의 결과는 나노 활석의 형성 메커니즘에 대한 이해를 고양할 수 있을 것으로 기대된다.

염료감응형 태양전지의 광전기적 특성 개선을 위한 금속산화물 나노파이버의 응용 (Application of Metal Oxide Nanofiber for Improving Photovoltaic Properties of Dye-Sensitized Solar Cells)

  • 동영상;김은미;정상문
    • 청정기술
    • /
    • 제24권3호
    • /
    • pp.249-254
    • /
    • 2018
  • 염료감응형 태양전지의 광전변환효율(${\eta}$) 향상을 위하여 수열합성한 $TiO_2$ 나노입자에 전기방사한 $TiO_2$, $SiO_2$, $ZrO_2$$SnO_2$ 나노파이버를 첨가하여 광전극에 적용하였다. $TiO_2$ 나노파이버를 첨가한 염료감응형 태양전지는 순수한 $TiO_2$ 나노입자에 비해 높은 전류밀도($J_{sc}$)를 나타내었고 이것은 나노파이버 구조로 인하여 염료에서 여기된 전지의 전달 특성이 용이하여 나타난 현상으로 생각된다. 또한 $SiO_2$ 나노파이버를 첨가한 염료감응형 태양전지의 경우, 순수한 $TiO_2$ 나노입자를 이용한 것에 비해 보다 높은 0.67 V의 개방전압($V_{oc}$)을 나타내었고 에너지 변환효율 또한 6.24%로 가장 높게 나타났다.

Epoxy/AIN Nanoparticles의 표면처리에따른 에폭시-Nanocomposites 열적 그리고 전기적 특성연구 (Thermal and electrical Characteristics of Epoxy-Nanocomposites according to AIN Nanoparticles Surface Treatment)

  • 이창훈;김종민;김재봉;이상협;김두환;박재준
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2009년도 추계학술대회 논문집
    • /
    • pp.149-149
    • /
    • 2009
  • 본 연구는 고압전력용 중전기기의 몰드절연 및 옥외용 LED의 절연소재는 기기내부에서 발생된 열에너지를 외부로 방사시키는 것이 무엇보다 중요한 것이다. 이런 이유로 고압전력용 전력기기 대부분은 상당한 체적분을 가지고 있기에 초절연을 가지면서 고열전도를 갖는 나노콤포지트를 개발하기위해 에폭시 메트릭스 기반 질화알루미륨의 표면 처리를 실시하여 에폭시 AIN Nanocomposites를 제조하였다. 나노입자의 균질분산은 나노콤포지트 열전도와 초절연성능에 크게 영향을 주게 된다. 이런 소재개발을 위해 에폭시메트릭스에 나노입자의 충진함량을 3wt%로 하였다. 전처리공정을 통하여 에폭시-나노콤포지트에 두 종류의 금속성 coupling agent (Tyzor TE, Tyzor AA-75)를 질화알루미륨 나노입자 표면처리를 건식법으로 실시하였다. 제조된 Epoxy-AIN Nanocomposites의 열적특성과 전기적 특성을 측정하였다. 전기적특성으로 초절연성의 특성인 형상파라미터가 10.93을 그리고 척도파라미터는 176 kV/mm로서 Weibull Plot 누적확률밀도로서(63.2%)의 통계분석된 값을 얻었다. 또한 열적특성 평가를 위해 유리천이온도와 DMA의 온도특성를 조사하였고, 열적.전기적 특성과 나노콤포지트 내부분산(내부 모폴로지:TEM영상)와 연관되어 연구한 결과, 상당히 일치한 결과를 얻을 수 있었다.

  • PDF

말 비장 Ferritin에서 합성된 Al과 $UO_2$ 나노 입자의 전자현미경 연구 (Electron Microscopy of the Al and $UO_2$ Nanophase Particles Synthesized in Horse Spleen Ferritin)

  • 문향란;김경숙;이정후
    • Applied Microscopy
    • /
    • 제29권3호
    • /
    • pp.323-329
    • /
    • 1999
  • 본 연구에서는 Al과 $UO_2$의 나노미터 크기의 무기물 입자를 합성하기 위하여 생체 시스템인 철단백질 ferritin을 이용하였다. Ferritin에서 합성된 Al과 $UO_2$의 무기물 입자를 TEM을 이용하여 관찰한 결과, 단백질 내부에 나노미터 크기의 구형인 미네랄(mineral) core를 확인하였다. 그 입자들에 대한 EDXA분석 결과 각각 Al과 $UO_2$로 구성된 미네랄임을 확인하였다. Ferritin을 이용하여 합성된 Al core는 이번 연구에서 처음으로 전자현미경으로 관찰되었다. 그리고 두 종류의 다른 금속 즉, Al/Fe및 $UO_2/Al$의 존재하에 ferritin core를 합성하여 TTM을 관찰한 결과, 역시 나노미터 크기의 구형인 전자밀도 core를 관찰하였고 EDXA분석 결과 구형인 core가 합성시킨 두 금속 원소의 미네랄로 구성되어 있음을 증명하였다. 그리하여 본 연구는 철단백질을 이용하여 철이 아닌 Al과 $UO_2$로 구성된 나노미터 크기의 무기물 입자를 합성할 수 있음을 증명하였다.

  • PDF

전달체로서의 덴드리머의 응용

  • 최이락;임수훈;안철희
    • 한국고분자학회지:고분자과학과기술
    • /
    • 제15권4호
    • /
    • pp.402-410
    • /
    • 2004
  • 덴드리머란 중심 (core) 분자로부터 나뭇가지 모양의 단위구조가 반복적으로 뻗어 나오는 거대분자 화합물이다. 3차원적으로는 구형에 가까운 구조를 가지고 있으며 중심부는 상대적으로 낮은 밀도를 가지는 반면, 외곽으로 갈수록 가지의 밀도가 증가한다. 덴드리머는 구조적으로 잘 정의된 거대분자로써, 정확한 분자량과 구조를 예측하여 합성함으로써 나노 크기 의 입자 형성이 용이하다. 덴드리머의 최외곽에 존재하는 말단기는 덴드리머의 표면 성질 및 용해도 등에 결정적인 영향을 미치는 것으로 알려져 있으며, 표면의 밀집된 말단기에 다양한 유도체와 작용기 도입이 가능하다.(중략)

  • PDF