• Title/Summary/Keyword: 나노에멀젼의 크기 효과

Search Result 11, Processing Time 0.022 seconds

Fabrication and Filtering Test of Nanoparticle-Stabilized Emulsion to be Suitable for Enhanced Oil Recovery (석유증진회수에 적합한 나노 에멀젼의 제조 및 필터링 시험 분석)

  • Son, Han Am;Lee, Keun Ju;Cho, Jang Woo;Im, Kyung Chul;Kim, Jin Woong;Kim, Hyun Tae
    • Economic and Environmental Geology
    • /
    • v.46 no.1
    • /
    • pp.51-61
    • /
    • 2013
  • Researches on the oil recovery enhancement using the nanotechnology has recently been studied in the United States. The previous researches has focused mainly on the flow characteristics of nanoparticles in porous media, and the stability of the nano-emulsion itself. However, the analysis did not deal with the size effects between a nano-emulsion and the pore size which has an important role when nano-emulsion flows in the porous media. In this research, nano-based emulsion was fabricated which is able to be applied for the enhanced oil recovery techniques and its characteristics was analyzed. In addition, in order to identify the characteristics of nano-emulsions flowing through the porous media, the size effect was analysed by filtering test. According to the results, when the emulsion was fabricated, SCA(Silane Coupling Agent) or PVA(Poly Vinyl Alcohol) are added to improve the stability of emulsion. As the ratio of the decane to water increased, the viscosity of emulsion and the droplet size also increased. For the filtering test at the atmospheric conditions, the droplet did not go through the filter; only the separated water from the emulsion was able to be filtered. This phenomenon occurred because the droplet was not able to overcome the capillary pressure. At the filtering test by suction pressure, most of the emulsion was filtered over the filter size of $60{\mu}m$. However, the ratio of filtration was rapidly degraded at less than $45{\mu}m$ filters. This is caused due to deformation and destruction of the droplet by strong shear stress when passing through the pore. The results from the study on the basic characteristic of nano-emulsion and filtering test will be expected to play as the important role for the fabrication of the stable nano-emulsion or the research on the recovery of residual oil in porous media.

Preparation of Nano-emulsion Containing Polygonum aviculare Extract for Enhanced Transdermal Delivery (피부 흡수 증진을 위한 마디풀 추출물 함유 나노에멀젼 제조에 관한 연구)

  • Lim, Myoung Sun;Park, Min A;Park, Soo Nam
    • Applied Chemistry for Engineering
    • /
    • v.23 no.2
    • /
    • pp.222-227
    • /
    • 2012
  • In this study, nano-emulsion containing ethyl acetate fraction of Polygonum aviculare (P. aviculare) extract was prepared and skin permeability of the nano-emulsion was evaluated. Nano-emulsion was prepared using homogenizer and microfluidizer by the high-energy method. The droplet size and loading efficiency of nano-emulsion containing ethyl acetate fraction of P. aviculare extract were determined. The mean droplet size was 238 nm and the loading efficiency was more than 98%. The size distribution of nano-emulsion was a monodispersed form and nano-emulsion was more stable than that of using typical emulsion without using the microfluidizer. The in vitro skin permeation study of nano-emulsion containing ethyl acetate fraction of P. aviculare extract was carried out using Franz diffusion cells. Compared to 1,3-butylene glycol, nano-emulsion showed greater values of cumulative permeation of ethyl acetate fraction from P. aviculare extract. These results indicate that the stability and skin permeability of nano-emulsion containing ethyl acetate fraction of P. aviculare exerting anti-oxidative and anti-aging activities were enhanced.

Nano-emulsion Containing Parthenocissus tricuspidata Stem Extracts for Enhanced Skin Permeation and the Antibacterial Activity of the Extracts (피부 흡수 증진을 위한 담쟁이덩굴 줄기 추출물 함유 나노에멀젼 및 이의 항균활성 연구)

  • Jo, Na Rae;Park, Min A;Jeon, So Ha;Park, Soo Nam
    • Microbiology and Biotechnology Letters
    • /
    • v.41 no.3
    • /
    • pp.320-326
    • /
    • 2013
  • In a previous study, we investigated the antioxidative and cellular protective effects of Parthenocissus tricuspidata stem extracts. In this study, we prepared nano-emulsion containing P. tricuspidata stem extract to improve skin permeation. The particle size of the nano-emulsion using the microfluidizer was 302 nm. Its loading efficiency was over 86%. The size distribution of the nano-emulsion took a monodispersed form and the nano-emulsion was more stable than typical emulsion without using microfluidizer during a 2 week period. In vitro skin permeation study of nano-emulsion containing P. tricuspidata stem extracts was carried out using Franz diffusion cell. The 1,3-butylene glycol used as a control group had 32.59% skin permeation efficiency. The skin permeation efficiency of the nano-emulsion was 42.47%. Also, we observed the antibacterial activity of the ethyl acetate fraction on skin flora for prospective applications as a natural antimicrobial. The ethyl acetate fraction had antibacterial activities higher than methyl paraben on Staphylococcus aureus, and Bacillus subtilis. These results indicate that nano-emulsion containing P. tricuspidata stem extracts could possess valued applications in cosmetic formulations for improving skin permeation. Also, based on the antibacterial activities on skin flora, antioxidative and cellular protective effects shown in our previous study, we suggest that P. tricuspidata stem extracts could be used as functional cosmetic materials.

Inorganic-organic nano-hybrid; Preparation of Nano-sized TiO$_2$ Paste Trapped OMC Nano-emulsion and it's Application for Cosmetics (OMC Nano-emulsion을 포집하고 있는 Nano-TiO$_2$-Paste의 합성과 화장품의 응용)

  • Byung Gyu, Park;Jong Heon, Kim;Jin Hee, Im;Kyoung Chul, Lee
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.30 no.2
    • /
    • pp.181-187
    • /
    • 2004
  • Preparations of mesoporous materials using various templates and their applicability have been intensively investigated for many years. We studied on synthesizing mesoporous Ti02 with pores in which sensitive compounds having weak physico-chemical properties such as thermal or UV irradiation and low solubility in solvent are trapped. Prior to trapping OMC in the pores of mesoporous titania, OMC was nano-emulsified in O/W system using Lecithin. Thereafter the OMC was trapped in the pores of mesoporous titania using sol-gel method. Main focus of this work is to prepare OMC-trapped mesoporous titania and to trace the stability and solubility of nano-emulsified OMC in the pores of mesoporous titania, and compared with that of mesoporous silica. OMC-trapped mesoporous Inorganic-Organic hybrid titania showed higher factors in sun protecting and a skin penetration phenomenon was reduced.

Effectiveness and Preparation of Nano-emulsion of a Rapeseed Oil Extract Originated from Jeju with PIT Emulsifying System (PIT유화시스템을 이용한 제주산 유채씨앗 오일추출물의 나노에멀젼의 제조 및 효과)

  • Joo, Se-Jin;Kim, Hack-Soo;Lee, Jeong-Koo;Lee, Min-Hee;Kim, In-Young
    • Journal of the Korean Applied Science and Technology
    • /
    • v.29 no.3
    • /
    • pp.486-494
    • /
    • 2012
  • Nano-emulsion with phase inversion temperature (PIT) emulsifying system was prepared to use rapeseed oil from originating Jeju in order to apply various cosmetic applications. Natural rape seed oil (NRSO) extraction was extracted using n-hexane as a solvent. NRSO extract showed a light yellowish color of viscous liquid as well as yield was $43{\pm}2.5%$. Acid value was $2.76{\pm}0.5$ and gravity was $0.89{\pm}0.05$. Droplet size of PIT-Yuche-NE with 20wt% of rapeseed oil was 50-120nm (average: $82{\pm}5.8nm$) and zeta potential was -29.5mV. It was thermodynamically good stable emulsion due to $(PEG)_{5-30}$fattyacidether. Some conclusions from the result of characteristic experiment were obtained as follows. First, the anti-oxidative activity was measured by free radical scavenging activity using DPPH (1,1-diphenyl-2-picrylhydrazyl radical). Anti-oxidative activity of PIT-Yuche-NE was $37.2{\pm}6.7%$ on 10mg/mL compared with PIT-Toco-NE (Natural tocopherol nano-emulsion, $28.8{\pm}6.5%$ on 10 mg/mL) and PIT-Nokcha-NE (Green tea extract nano-emulsion, $29.6{\pm}7.2%$ on 10mg/mL). Second, the collagen synthesis activity of PIT-Yuche-NE was $148{\pm}15.2%$ compared with PIT-Toco-NE (Natural tocopherol nano-emulsion, $121{\pm}13.5%$ on 10mg/mL) and PIT-Nokcha-NE (Green tea extract nano-emulsion, $95{\pm}12.7%$ on 10mg/mL). Third, the effectiveness of moisturizing activity of Yuche-CRM with Aramo-TS after 6 hours increase $47{\pm}3.9%$ (*p-value£0.05, n=7) whereas Both Toco-CRM was $30{\pm}5.2%$ (*p-value£0.05, n=7) and Nokcha-CRM was $35{\pm}4.5%$. Therefore, Yuche-CRM has higher moisturizing effect than other two creams. Finally, Nano-emulsion stabilizing rapeseed oil using PIT emulsifying system of this study can be used to apply cosmetics industry and pharmaceutical industry.

Effect of Oil in Water Nanoemulsion Containing a Mixture of Lactic Acid and Gluconolactone for Skin Barrier Improvement (유산 및 글루코노락톤 혼합물을 함유하는 수중유형 나노에멀젼의 피부장벽개선 효과)

  • Ji-Hye Hong;Young Duck Choi;Gye Won Lee;Young Ho Cho
    • Journal of Life Science
    • /
    • v.33 no.11
    • /
    • pp.905-914
    • /
    • 2023
  • To evaluate the effectiveness of the skin barrier improvement of lactic acid (LA) and gluconolactone (GL), the expression of filaggrin, loricrin, hyaluronic acid (HA), hyaluronan syhthase-2 (HAS2), and aquaporine-3 (AQP3) in keratinocytes, and the moisture content and transepidermal water loss (TEWL) by clinical trials were evaluated. The expression levels of filaggrin and locricrin, which are the main factors affecting the proper functioning of skin barrier function, and HA, HAS2, and AQP3, which are skin moisturizing-related proteins measured by quantitative real-time polymerase chain reaction (qRT-PCR) and western blotting. The results showed that the expression levels of the factors that decreased by H2O2 treatment were significantly increased by LA, GL, and a mixture of LA and GL at the mRNA and protein levels (p<0.05). The nanoemulsion containing a mixture of LA and GL was prepared using the emulsion inversion method, and the average particle size was 299.9 ± 0.287 nm. After measuring the TEWL of nanoemulsion using Vapometer, it was found that TEWL significantly decreased by 15.53% and 26.73% after two weeks and four weeks of product use, respectively, compared to TEWL before product use (p<0.001). Similarly, the skin moisture content of the nanoemulsion significantly increased by 15.40% and 26.59% after two weeks and four weeks of product use, respectively, compared to skin moisture content before product use (p<0.001). Therefore, the skin barrier function and moisturizing effect of a mixture of LA and GL are shown by increasing the moisture content and decreasing the TEWL by increasing the expression of filaggrin, loricrin, HA, HAS2, and AQP3. This suggests the possibility for the development of functional cosmetic ingredients in the future.

Synthesis of Macroporous TiO2 Microparticles for Anti-Bactericidal Application (거대 기공을 갖는 다공질 TiO2 분말의 살균 효과)

  • Roh, Seong Hoon;Kim, Jeong Keun;Cho, Young-Sang
    • Korean Chemical Engineering Research
    • /
    • v.56 no.4
    • /
    • pp.524-535
    • /
    • 2018
  • In this study, macroporous titania powders were synthesized utilizing the emulsion-assisted self-assembly to apply the removal of B. subtilis under UV irradiation, and the results were compared with the bactericidal effect of commercial titania nanoparticles. By changing the pore size of the porous titania powder, the reduction of B. subtilis by photocatalytic effect was measured, and the bactericidal capacity of the porous particles according to the pore size was compared in order to derive the optimum condition of the sterilization experiment. It was observed that the sterilization effect increased as the pore size became smaller, and it was confirmed that more than 50% of B. subtilis cold be removed for 1 hour of UV irradiation. Also, in order to promote the generation of active chemical species, a diluted solution of hydrogen peroxide was combined with the photocatalytic sterilization method, resulting in the removal of most of the strain after ultraviolet irradiation for 1 hour.

Nitric Oxide Delivery using Nanostructures and Its Biomedical Applications (나노 구조체를 이용한 산화질소 전달체에 대한 연구 및 바이오메디컬 응용)

  • Choi, Yunseo;Jeong, Hyejoong;Park, Kyungtae;Hong, Jinkee
    • Korean Chemical Engineering Research
    • /
    • v.57 no.3
    • /
    • pp.305-312
    • /
    • 2019
  • The discovery of nitric oxide (NO) as a major signaling molecule in a number of pathophysiological processes - vasodilation, immune response, platelet aggregation, wound repair, and cancer biology - has led to the development of various exogeneous NO delivery systems. However, the development of ideal delivery system for human body application is still left as a challenge due to its high reactivity and short half-life in physiological condition. In this article, an overview of several nano-structures as potential NO delivery system will be presented, along with their recent research results and biomedical applications. Nano-size delivery system has immense advantages compared to others due to its high surface-to-volume ratio and capability for surface modification; thus, it has been proven to be effective in delivering nitric oxide with enhanced performance. Through this novel nano-structure delivery system, we are expecting to achieve sustained release of nitric oxide within adequate range of concentration, which ensures desired drug effects at the target site. Among different nano-structures, in particular, nanoparticle, microemulsion and nanofilm will be reviewed and compared to each other in respect of nitric oxide release profile. The proposed nano-structures for exogeneous NO delivery have a biological significance in that it can be further utilized in diverse biomedical fields as a highly promising therapeutic method.

Characteristics of α-Tocopherol-loaded Nanostructured Lipid Carriers and their Stabilization Effect (α-Tocopherol을 함유한 Nanostructured Lipid Carriers의 특성과 안정화 효과)

  • Jun, Yoon Kyung;Lim, Yoon Mi;Jin, Byung Suk
    • Applied Chemistry for Engineering
    • /
    • v.26 no.6
    • /
    • pp.659-665
    • /
    • 2015
  • Loading of hydrophobic ${\alpha}$-tocopherol into nanostructured lipid carrier (NLC) was performed for improving its oxidative stability. First, various NLCs with different constituents and mixing ratios were prepared and their characteristics were investigated. While the stable NLCs were made when cetyl palmitate (CP) or glyceryl monosterate (GMS) was used as a solid lipid, the phase separation occurred in the NLCs consisting of stearic acid. Particle sizes of the NLCs were several hundreds of nanometers and the size decreased with increasing the ratio of solvent to lipid. It was examined from DSC thermogram and anisotropy test that the degree of crystallinity of the lipid phase decreased and the lipid matrix became less ordered when octyldodecanol, a long chain fatty alcohol, was added into the solid lipid. The oxidative stability of ${\alpha}$-tocopherol in NLC was remarkably improved compared to that in solution or emulsion under high temperature ($45^{\circ}C$) and UV radiation, which was verified through DPPH test and peroxide value measurement.

Effectiveness and Preparation of Microsome containing Fermented Squalene (발효 스쿠알렌을 함유한 마이크로좀의 제조 및 효능효과)

  • Kim, Ye-Jin;Kim, Tae-Hyun;Cho, Heui-Kyoung;Seong, Nak-Jun;Kim, In-Young;Yoo, Kwang-Ho;Kim, Young-Ho
    • Journal of the Korean Applied Science and Technology
    • /
    • v.37 no.5
    • /
    • pp.1159-1170
    • /
    • 2020
  • In this study, to improve the stability of fermented squalene developed using microorganisms, Microsome-SQ20 was prepared, and its physical behavior, properties, and efficacy were studied. The appearance of Microsome-SQ20 was a transparent liquid, no smell, and had a specific smell. The color was a transparent liquid, and the specific gravity was 0.928 and the pH was 5.82 (20% solution), forming a nano-emulsion suitable for use in cosmetics. It was confirmed that the content of the main component of squalene was 20.05%, which was stably sealed. The particle size measured by 0.1% aqueous solution of Microsome-SQ20 was 134.8 nm to obtain a bluish emulsified phase. The antioxidant effects of F-SQ and MF-SQ by DPPH radicals were 80.72% and 81.5%, respectively, showing superior effects compared to L-ascorbic acid. The cell viability of squalene (SQ), fermented squalene (F-SQ) and microsome squalene (MF-SQ) was at 10 ppm, respectively, showing 121.2%, 150.3%, and 129.9% cell viability. It was found that SQ, F-SQ, and MF-SQ had an elastase inhibitory ability of 8.7%, 10.33% and 8.7% at 10 ppm, respectively. In addition, the inhibitory ability of MMP-1 was 1.55%, 41.44%, 31.79% at 10 ppm for SQ, F-SQ, and MF-SQ, respectively, indicating that F-SQ significantly reduced the MMP-1 expression.