• 제목/요약/키워드: 끌줄길이

검색결과 16건 처리시간 0.022초

실선 시험에 의한 저층 트롤 어구에 관한 연구-II -어구의 수중 형태에 관하여- (A study on the bottom trawl gear by the trial of a stern trawler-II -On the net shape of a bottom trawl gear-)

  • 조봉곤;고광수
    • 수산해양기술연구
    • /
    • 제36권4호
    • /
    • pp.281-286
    • /
    • 2000
  • 저층트롤 실물 어구를 이용한 해상 실험을 통하여 예망 중인 어구의 망구 형태에 관련되는 전개판의 간격 및 망고 등을 예망 속도별, 끌줄의 길이별로 측정하고, 이론적인 수치 해석 결과와 비교하여 실물어구의 수중 현황을 해석함으로서 어구의 효율적인 운용과 어획효과의 증대를 위한 기초자료를 제공하고자 한다. 수중 현황을 해석한 결과를 요약하면 다음과 같다. 1. 전개판의 전개간격은 예망 속도와 끌줄길이의 증가에 따라 직선적으로 증가하며 끌줄 길이에 의한 증가율이 예망 속도에 의한 증가율보다 현저히 크게 나타났으며, 그 간격의 변화는 57.0∼82.8m로서 후릿줄과 그물목줄 및 그물길이 전체의 43∼62%를 차지하였다. 2. 망구의 높이는 예망 속도와 끌줄길이의 증가에 따라 직선적으로 감소하며, 예망 속도에 의한 감소율이 끌줄 길이에 의한 감소율보다 현저히 크게 나타났는데 그 높이의 변화는 3.1∼4.0m로 나타났다. 3. 양 날개끝의 간격이 커지면 망고는 낮아지나 끌줄 길이가 증가할수록 날개 끝 간격의 증가에 대한 망구 높이 감소율의 비는 점차 작아졌다. 4. 망고에 대한 양 날개 끝 간격의 비는 예망속도와 끌줄 길이의 증가에 따라 점차 커졌는데, 그 비는 4.17∼7.81로 나타났다.

  • PDF

무부자 쌍끌이 중층망의 전개성능에 관한 모형실험 1. 아래끌줄 길이에 따른 전개성능

  • 유제범;이주희;권병국;김정문
    • 한국어업기술학회:학술대회논문집
    • /
    • 한국어업기술학회 2001년도 춘계 수산관련학회 공동학술대회발표요지집
    • /
    • pp.65-66
    • /
    • 2001
  • 쌍끌이 중층망은 대형으로 양망시 네트드럼으로 양망해야 하므로 드럼용량이 커야하고, 드럼에 감긴 그물을 투망 할 때에 뜸에 그물코가 얽혀서 파망이나 안전사고를 유발하기도 한다. 또한, 망구 깊이를 주로 끌줄길이와 예망속도로서 제어하고 있으나, 어구저항이 커서 속도의 조절에 한계가 있다. 중층망의 이러한 결점을 보완하기 위하여 최근에는 뜸 대신 카이트(kite)의 사용에 대한 연구(권, 1995)가 있고, 유럽에서는 뜸 없는 무부자(無浮子) 어구를 개발하여 어구저항의 획기적인 감소를 도모하고 있다. (중략)

  • PDF

한국 근해에 있어서의 중층 트로올의 연구 ( V ) - 전개판에 대형 뜸을 달았을 때의 전개성능 - (Study on the Midwater Trawl Available in the Korean Waters ( V ) - Opening Efficiency of the Otter Board with a Large Float on the Top -)

  • 이병기;김민석
    • 수산해양기술연구
    • /
    • 제24권2호
    • /
    • pp.78-82
    • /
    • 1988
  • 한국근해의 중층 트로올선에서 전개판의 수중중량을 경감시켜서 끌줄을 길게 주므로서 전개력을 향상시키기 위하여 스티로폴뜸을 전개판의 천정판에 고정시키고 끌줄 길이와 예망속력을 변화시켰을 때의 전개판의 깊이와 전개간격을 실측한 것을 분석.검토한 결과는 다음과 같다. 1. 전개판 깊이는 끌줄 길이가 100m이고 예망속력이 101~108m/sec인 범위에서 뜸이 있을 경우 41~25m, 뜸이 없을 경우 45~26m이고, 뜸줄 길이가 150m일 경우는 뜸이 있을 경우 68~44m, 뜸이 없을 경우 74~46m로서 뜸이 있을 경우가 없을 경우보다도 9~4% 정도 얕았다. 또 실측치는 어느 경우나 계산치보다도 15% 작았다. 2. 전개판의 전개간격은 끌줄 길이가 100m이고, 예망속력이 1.1~1.8m/sec인 범위에서는 뜸이 있을 경우 34~41m, 뜸이 없을 경우 30~38m이고, 끌줄 길이가 150m일 때는 뜸이 있을 경우 44~50m, 뜸이 없을 경우 37~46로서 있을 경우가 없을 경우보다도 끌줄 길이 100m에서 10%, 150m에서 15%정도 더 컸다. 또, 실측치는 계산치보다 항상 컸으며 계산치에 대한 실측치의 비는 끌줄 길이가 100m일 때 1.17~1.14, 150m일 때 1.17~1.09이었다. 3. 날개 끝 간격은 끌줄 길이 100m인 때 뜸이 있을 경우가 없을 경우보다 1m 정도 크고 유효망구면적으로는 10% 정도 크며, 끌줄 길이가 150m인 때는 그 차이가 2m로서 유효망구면적으로는 20% 정도 크다고 추정된다. 따라서 전개판에 뜸을 달아서 전개판의 수중중량을 일시적으로 가볍게 해 주는 것은 유효망구면적을 크게 하므로 어획성능향상에 상당히 도움이 될 것이 기대된다

  • PDF

실선 시험에 의한 저층 트롤 어구에 관한 연구-I -어구의 저항에 관하여- (A study on the bottom trawl gear by the trial of a stern trawler-I -On the Resistance of bottom trawl gear-)

  • 조봉곤;조성옥
    • 수산해양기술연구
    • /
    • 제36권4호
    • /
    • pp.274-280
    • /
    • 2000
  • 본 연구는 실습선에서 사용 중인 6폭짜리 저층트롤 어구의 저항을 끌줄의 길이와 예망 속도별로 분석하기 위하여 그물의 저항과 전개판의 저항을 계측하고, 어구의 저항계수를 산정하였으며, 그 결과를 요약하면 다음과 같다. 1. 시험 어구의 저항은 끌줄의 길이가 길수록 증가하나, 저항 R$\sub$t-w/=3800v$^2$으로 대표할 수 있다. 2. 그물 어구의 저항은 끌줄의 길이에 따라 다소 증가하나, 그물 어구의 저항 R$\sub$n/=10R$\sub$n/=10d/lλ$\sub$a/λ$\sub$b/v$\^$1.3/의 식으로 대표할 수 있다. 3. 시험 어구의 전개판의 저항 R$\sub$b/=1810v$\^$0.8/으로 대표할 수 있다. 4. 끌줄의 길이별로 측정된 저항값과 Koyama의 저항식과 비교하면, 예망속도가 작을 때는 시험 어구의 저항이, 예망속도가 클 때는 Koyama의 저항식에 의한 저항값이 크게 나타났다.

  • PDF

무부자 쌍끌이 중층망 어구어법의 개발(I) - 아래끌줄의 길이에 따른 모형어구의 전개성능 - (Development for Fishing Gear and Method of the Non-Float Midwater Pair Trawl Net(I) - Opening Efficiency of Model Net according to the Length of Lower Warp -)

  • 이주희;유제범;이춘우;권병국;김정문
    • 수산해양기술연구
    • /
    • 제39권1호
    • /
    • pp.33-43
    • /
    • 2003
  • 본 연구는 현재 국내에서 사용되는 쌍끌이 중층망 어구어법에서 문제점으로 지적되고 있는 고속예망에서 망고의 제어가 어렵다는 점, 망목에 뜸이 걸려서 파망이 자주 일어나는 점, 네트드럼에 감기는 어구부피가 너무 크다는 점 등의 해결방법으로 무부자 쌍끌이 중층망의 모형실험을 통하여 우리 나라 쌍끌이 중층망에 대한 적용 가능성을 검토하는데 있다. 이를 위하여 850ps급 쌍끌이 기선저인망어선에서 현재 사용되는 실물망을 1/100로 축소 제작한 모형망에서 뜸을 모두 제거하고 끌줄을 양쪽으로 각각 두가닥으로 분리한 후 추를 부착하여 아래끌줄의 길이를 조절함으로써 망고를 제어할 수 있는 무부자 쌍끌이 중층망의 모형어구를 제작하여 회류수조에서 유속에 대한 아래끌줄의 길이에 따른 어구의 전개성능 등을 규명하고 기준형과 비교 분석한 결과를 요약하면 다음과 같다. 1. 유체저항은 무부자망이 기준형보다 약 10∼20%정도 작았으며, 무부자망의 유체저항은 동일유속에서 아래끌줄이 길어짐에 따라 약 1ton씩 증가하였다. 또, 동일유속에서 dL이 10m씩 증가함에 따라 아래끌줄에 작용하는 저항은 약 5%씩 감소하고, 그 반면에 윗 끌줄에 작용하는 저항이 증가하였다. 2. 망고는 직선에 가까운 지수함수적으로 감소하는 경향을 보였으며, 동일유속에서 아래끌줄이 길어짐에 따라 증가하여 로그함수적인 경향을 보였다. 또한, 망고감소율은 무부자망의 경우가 기준형보다 작게 나타났으며, 그 차이는 유속이 증가함에 따라 더욱 커져 dL이 30m인 무부자망을 기준으로 3.0knot일 때 12%, 4.0knot일 때 25%로 나타났다. 3. 망폭은 유속이 증가함에 따라 약 2m 내외로 거의 일정하였으며 무부자망이 기준형보다 크게 나타났다. 4. 망구면적은 유속이 증가함에 따라 지수함수적으로 감소하는 경향을 보였으며, 망구면적의 감소율은 기준형보다 무부자망이 더 작게 나타났다. 여과량은 유속이 증가함에 따라 로그함수적인 경향을 보였으며 기준형이 3.0knot 이상에서 급격히 감소하였지만, 무부자망은 4.0knot까지 증가하였다가 완만하게 감소하였다. 5. dL의 최대적정길이는 망구면적 및 여과량이 최대인 30m일 때이며, 추의 최적위치는 4개의 그물목줄이 연결되는 지점이었다.

중층 트롤 어구 시스템 운동의 유체역학적 시뮬레이션 (Hydrodynamic Simulation of Midwater Trawl System Behavior)

  • 차봉진;이춘우;이주희;김현영
    • 수산해양기술연구
    • /
    • 제38권2호
    • /
    • pp.164-171
    • /
    • 2002
  • 본 연구에서는 중층 트롤 어구 시스템의 운동을 예측하기 위한 운동방정식을 정의하였고 중층 트롤 어구 시스템의 운동을 유체역학적으로 해석하여 시뮬레이션에 적용하여 계산한 결과를 해상에서 실험한 결과들과 비교하여 시뮬레이션의 정확도를 검증하였다. 해상실험은 1997년 8월 28일부터 1997년 8월 30일까지 동해상(36$^{\circ}$05'N, 130$^{\circ}$25'2E~36$^{\circ}$20'N,130$^{\circ}$47'E)에서 부경대 실습선 가야호를 이용하여 실시하였다. 그 결과는 다음과 같다. 1. 중층 트롤 시스템의 운동을 해석하기 위해 사용된 운동 방정식은 m$_{i}$equation omitted/=f$_{i}$으로 기술하였고, 여기서 m과 /equation omitted/는 각각 질점 i의 질량과 가속도이며, f$_{i}$는 질점에 작용하는 힘이다. 2. 각 질점에 작용하는 힘은 내력과 외력으로 구성되며, 내력은 질점 사이에서 작용하는 힘으로 어구 시스템 구성에 사용된 각 종 줄과 그물실의 탄성에 의한 힘이며, 외력은 질점에 작용하는 저항, 부력 그리고 중력 등이다. 3. 시뮬레이션의 결과를 해상실험의 결과와 정량적으로 비교하기 위해 끌줄길이 250m, 예망속력 2m/s에서의 전개판 간격, 전개판 수심 망고 그리고 망폭을 비교하였다. 이 때 전개판 사이의 간격과 망폭은 계산치와 실험치가 거의 일치하며, 전개판의 수심과 망고는 각각 5m와 4m의 오차를 가지고 있었다. 4. 시뮬레이션 도중 끌줄의 길이, 예망속력, 부력 그리고 전개판 면적을 증가시키면서 어구의 형상을 계산한 결과를 앞선 해상 실험들의 결과와 비교하였다. 이 때 끌줄길이를 증가시킨 경우 어구의 예망수심이 깊어졌으며 전개판의 간격이 증가하였다. 예망속력을 증가시킨 경우 어구가 수면으로 부상하였으며 전개판의 간격이 줄어들었다. 부력을 증가시킨 경우에도 어구가 수면으로 부상하였으며 전개판의 간격과 망폭이 줄어들었다. 마지막으로 전개판의 면적을 증가시킨 경우에는 전개판의 전개력이 증가하여 전개판 사이 간격이 커지고 망폭이 증가하였다.

퍼스널 컴퓨터를 이용한 중층트롤어구 거동 시뮬레이션

  • 차봉진;이춘우;이주희;이지훈
    • 한국어업기술학회:학술대회논문집
    • /
    • 한국어업기술학회 2001년도 추계 수산관련학회 공동학술대회발표요지집
    • /
    • pp.31-32
    • /
    • 2001
  • 어구의 형상과 움직임은 어구를 구성하는 부품의 물리적인 특성 및 어구의 디자인과 예망속력 및 끌줄 길이의 변화와 같은 어구 조작방법에 따라 달라지며, 이러한 변화는 어획량에 매우 큰 영향을 미친다. 따라서 어구의 디자인과 어구 조작방법에 따라 달라지는 어구의 형상과 거동을 예측할 수 있다면 성능이 우수한 어구를 개발할 수 있으며, 어구를 운용하는데 있어서도 중요한 정보를 얻을 수 있다. (중략)

  • PDF

무부자 쌍끌이 중층망의 전개성능에 관한 모형실험 2. 추(Front weight)와 날개끝 추(Wing-eng weight)의 무게에 따른 전개성능

  • 권병국;유제범;이주희;김정문
    • 한국어업기술학회:학술대회논문집
    • /
    • 한국어업기술학회 2001년도 춘계 수산관련학회 공동학술대회발표요지집
    • /
    • pp.67-68
    • /
    • 2001
  • 무부자 쌍끌이 중층망은 유속에 관계없이 뜸줄이 거의 일직선으로 유지되고 뜸줄의 깊이 변화가 없으므로 부력은 작용하지 않지만 아래 끌줄의 길이를 조절함으로써 망고를 유지할 수 있다. 또한, 무부자 쌍끌이 중층망은 발줄의 침자 외에도 추(Front weight)와 날개끝 추(Wing-end weght)의 무게를 증가시키면, 아래쪽으로의 침강력이 작용하여 망고를 더 크게 할 수 있어 기존어구보다 전개성능을 더욱 향상시킬 수 있다. (중략)

  • PDF

중층트롤의 깊이바꿈과 소해심도의 안정성 (Depth Control and Sweeping Depth Stability of the Midwater Trawl)

  • 장지원
    • 수산해양기술연구
    • /
    • 제9권1호
    • /
    • pp.1-18
    • /
    • 1973
  • 중층트를 어구(漁具)의 소해심도(掃海深度)를 일정(一定)한 적정어획속도(適正漁獲速度)에서 기동성(機動性)있게 변화(變化)시키기 위하여 기초적인 모형어구(模型漁具)의 수조실험(水槽實驗)과 특별(特別)히 고안한 깊이바꿈틀을 이용(利用)한 이차(二次)에 걸친 해상시험(海上試驗)을 통(通)하여 연구한 결과를 요약(要約)하면 다음과 같다. 1. 중층(中層)트롤의 그물어구의 깊이 y는 끌줄의 길이 L과 단위(單位) 길이의 끌줄, 깊이바꿈틀 및 그물의 각(各) 수중중량(水中重量) $W_r,\;W_o,\;W_n$과 각(各) 항력(抗力) $R_r,\;R_o,\;R_n$ 사이의 관계(關係)는 차원해석법(次元解析法)에 의하면 다음과 같다. $$y=kLf(\frac{W_r}{R_r},\;\frac{W_o}{R_o},\;\frac{W_n}{R_n})$$ 단(但), k는 상수(常數)이고 f는 함수이다. 2. 단위 길이당(當)의 수중중량(水中重量) $W_r$, 길이 L인 끌줄 끝에 항력(抗力) $D_n$, 수중중량(水中重量) $W_n$d인 수중저항분를 매달고 끌줄의 다른 한 끝을 수면(水面)에서 예인(曳引)할 때,. 끌줄의 형상(形狀)을 현수곡선이라고 보면, 수중저항분의 깊이 y는 다음과 같다. $$y=\frac{1}{W_r}\{\sqrt{{D_n^2}+{(W_n+W_rL)^2}}-\sqrt{{D_n^2+W_n}^2\}$$ 3. 중층(中層)트롤의 그물어구(漁具)깊이의 변화(變化) ${\Delta}y$는 예강(曳綱)의 길이 L을 바꾸거나 추(錘) ${\Delta}W_n$를 부가(附加)하면 다음과 같다. $${\Delta}y{\approx}\frac{W_n+W_{r}L}{\sqrt{D_n^2+(W_n+W_{r}L)^2}}{\Delta}L$$ $${\Delta}y{\approx}\frac{1}{W_r}\{\frac{W_n+W_rL}{\sqrt{D_n^2+(W_n+W_{r}L)^2}}-{\frac{W_n}{\sqrt{D_n^2+W_n^2}}\}{\Delta}W_n$$ 단(但), $D_n$은 그물어구의 항력(抗力)이다. 4. 끌줄 상(上)의 중간점(中間点)에 추(錘) $W_s$를 부가(附加)할 때 중층(中層)트롤 그물어구의 깊이바꿈 ${\Delta}y$$${\Delta}y=\frac{1}{W_r}\{(T_{ur}'-T_{ur})-T_u'-T_u)\}$$ 단(但) $$T_{ur}^l=\sqrt{T_u^2+(W_s+W_{r}L)^2+2T_u(W_s+W_{r}L)sin{\theta}_u$$ $$T_{ur}=\sqrt{T_u^2+(W_{r}L)^2+2T_uW_{r}L\;sin{\theta}_u$$ $$T_{u}'=\sqrt{T_u^2+W_s^2+2T_uW_{s}\;sin{\theta}_u$$ $T_u$ 추(錘)를 부가(附加)하지 않았을 때 끌줄 상(上)의 중간점(中間点)에 있어서의 예인어선(曳引漁船) 쪽을 향하는 장력(張力)이고, ${\theta}_u$는 장력(張力) $T_u$와 수평방향(水平方向)과 이루는 각도(角度)이다. 5. 어떠한 형태(形態)의 저예강용(底曳綱用) 전개판(展開板)도 성능(性能)에 있서어 차이는 있으나 전중량(全重量)을 가볍게 하고 저변(底邊)에 무게를 달아 안정(安定)시키면 중층예강용(中層曳綱用)으로 사용(使用)할 수 있다는 것이 모형(模型) 실험(實驗)결과 밝혀졌다. 6. 모형(模型) 그물(Fig.6)의 수조실험(水槽實驗)에서는 예강속도(曳綱速度) v m/sec, 강고(綱高) H cm 및 수유저항(水流抵抗) R kg 사이에는 다음과 같은 간단(簡單)한 관계식(關係式)이 성립(成立)한다. $$H=8+\frac{10}{0.4+v}$$$R=3+9v^2$$ 7. 특별(特別)히 고안한 십자(十字)날개형(型) 깊이바꿈틀과 H날개형(型) 깊이 바꿈틀을 비교(比較)한 결과(結果) 전자(前者)보다 안정성(安定性)이 우월하였다. 8. 그물어구(漁具)의 유수저항(流水抵抗)이 매우 크며 또 거의가 항력(抗力)으로 볼 수 있으므로 깊이바꿈틀의 종류에 관계없이 그물어구의 소해심도(掃海深度)는 대단히 안정(安定)된 상태를 유지하였다. 9. H날개형(型) 깊이바꿈틀의 수평(水平)날개 면적율 $1.2{\times}2.4m^2$로 하였을 때 유수저항(流水抵抗) 2 ton의 그물 어구를 2.3kts로 예인(曳引)하면서 영각(迎角)을 $0^{\circ}{\sim}30^{\circ}$로 변화(變化)시킨 결과(結果), 끌줄의 길이에 관계없이 약(約) 20m의 깊이바꿈을 얻을 수 있었다.

  • PDF

소형 어류 플랑크톤 채집용 FMT Net 의 운용 특성 (Handling Charactristics of FMT Net for the Larval Fish and Plankton)

  • 정순범
    • 수산해양기술연구
    • /
    • 제41권2호
    • /
    • pp.122-128
    • /
    • 2005
  • The experiments were conducted to fine out the handling characteristics of the FMT(Frame Mideater Trawl) in the southern waters of Korea using a trawler "DONGBAEK" belongs to Yosu National University. The realtionship between the net depth D(m) and the warp length L(m) at the towing speeds of 2.5k't and 3.5k't werw as follows ; D(m) = 0.30L - 1.3(2.5k't), D(m) = 0.16L - 1.5(3.5k't). Therefore, the net depth was 3.0m deeper when the warp length was 10m longer at the towing speed of 2.5k't and was 1.6m deeper for 10m longer at the speed of 3.5k't, respectively. The sinking speed of FMT was 6.5m/min when the warp releasing speed was 24m/min at the towing speed of 2.5k't and was 3.8m/min for 25m/min at the towing speed of 3.5k't, respectively. The rising speed of FMT was 6.9m/min when the warp rewinding speed was 28m/min at the towing speed of 2.5k't and was 5.3m/min for 25m/min at the towing speed of 3.5k't, respectively. The mean elapsed time getting to the stable towing condition was 104sec at the towing speed of 2.5k't and was 105sec at the towing speed of 3.5k't, respectively, and there was no time difference for the towing speed variation. During the towing, the net depth was comparatively stable on the condition of no change for the warp length and the towing speed.