• Title/Summary/Keyword: 깊이 추정

Search Result 583, Processing Time 0.032 seconds

The Development and Luminescence Chronology of a Coastal Dune from the Shindu Dunefield, T′aean Peninsula (신두리 지역의 전사구(前砂丘)에 대한 OSL 연대 측정 및 지형 발달)

  • Munyikwa Kennedy;Jong-Wook Kim;Jeong-Heon Choi;Kwang-Hee Choi;Jong-Min Byun
    • Journal of the Korean Geographical Society
    • /
    • v.39 no.2
    • /
    • pp.269-282
    • /
    • 2004
  • Luminescence dating of a coastal dune from the Shindu dunefield on the T'aean Peninsula shows that deposition of the dune structure began about 500-600 years ago. The lower section of the dune has remained stable since then but the upper part yields an age of about 30 years, suggesting reactivation or additional deposition since the 1970's. The two samples that were collected from the lower part of the dune at depths of 3.5 m and 2.0 m below the surface differ by an age interval of about 50-70 years. This indicates a net depositional rate of around 2.5 cm a year which is relatively slow for a coastal dune. Whilst only one dune structure has been dated for the time being and even though the dunefield was probably established much earlier in the Holocene, the OSL ages obtained demonstrate that some dunes in the area could be younger than 1000 years. Such chronologies point to a dynamic environment where the dune structures are not permanently fixed. Sedimentological properties of the dune sands are consistent with those of particles initially deposited under subaqueous conditions and then later transported by wind.

Analysis of Apparatus Variables for Deformation Strength Test of Asphalt Concrete Based on Correlation with Rutting and Prediction Model for Rutting (소성변형과의 상관성 및 추정모델을 통한 변형강도 시험장치 변수 분석)

  • Kim, Kwang-Woo;Lee, Moon-Sup;Kim, Sung-Tae;Lee, Soon-Jae
    • International Journal of Highway Engineering
    • /
    • v.4 no.4 s.14
    • /
    • pp.41-52
    • /
    • 2002
  • This study dealt with analysis of size effect of testing apparatus for Kim test which measures rut resistance characteristics of asphalt mixture under static loading. Two columns in different diameter with each column having different radios of round cut (Curvature) at the bottom were used for testing asphalt mixture. Deformation load ($P_{max}$) and deformation strength ($K_D$) were found to have relatively high correlation with rut depth and dynamic stability of asphalt concrete. Diameter of specimen was not a significant factor in this test. From the statistical correlation analysis with rutting properties, the radius of curvature and diameter of loading column were found to be important factor affecting the results of the test. Among the radios (r) of curvatures, r=0.5cm and 1.0cm showed much higher correlation than the column without curvature, and r=1.0cm being better between the two. The column with diameter of 4cm showed better correlation than diameter of 3cm. Therefore, the column of 4cm diameter with r=1.0cm was found to be the best among various apparatus sizes. Prediction models for rut depth and dynamic stability were developed for each aggregate mixture based on Kim test variables using SAS STEPWISE procedure. Therefore, if this test method is validated through further study, Kim test can be used for selecting asphalt mixture with the highest resistance against permanent deformation.

  • PDF

A Study for Scour Formulas Reviewing in Small Stream Watershed (소하천유역에서 교량세굴 검토 시 적용 가능한 세굴산정공식 비교)

  • Lee, Sung-Hyun;Kim, Dae-Gon
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2012.05a
    • /
    • pp.521-521
    • /
    • 2012
  • 우리나라는 산악지역이 국토의 대부분을 차지하고 있어 전체유역을 놓고 볼 때 대하천이 차지하는 부분보다는 중소하천이 차지하는 부분이 상대적으로 크고, 교량의 길이가 짧은 소교량이 수적으로 많은 부분을 차지하고 있다. 그중에서도 특히 중소하천의 유량은 시간적으로 매우 빠르게 변화하며 유속 또한 급속히 빨라져 하상의 변형이 순식간에 일어나고 있다. 이와 같은 시간적, 공간적인 호우특성과 지형특성으로 인하여 중소하천에 위치한 교량은 특히 세굴에 매우 취약함을 보여주고 있다. 하천에 건설되는 교량의 수명이나 안정성에 세굴이 미치는 영향은 매우 크며, 특히 우리나라와 같이 홍수 시 단기간에 걸쳐 유량이 급증하는 경우 유속에 의한 교량 기초의 급격한 세굴은 예상치 못한 교량 붕괴 사고를 초래할 수 있다. 현재 국내 소하천에 설치된 교량은 약 3,470개소(지방도 기준)로 다양한 하부구조로 설계되어 있다. 이렇게 하천 내에 세워진 교량과 같은 횡단 구조물들은 그 크기에 상관없이 하천의 형태에 영향을 미치게 된다. 그중에서 교량 세굴은 하천 횡단구조물로 인하여 발생되는 가장 중요한 문제 중의 하나로써 교량 건설 시 교각에 영향을 주는 세굴을 예측하고 방어하기 위하여 다양한 방정식을 통하여 신설교량의 교각세굴을 예측한다. 하지만 대부분의 교량 세굴 공식들은 실험실에서의 실험 결과를 토대로 개발되었기 때문에 이들 공식들이 산정한 국소 세굴량이 얼마나 정확한지는 실제 현장 관측 자료와의 비교를 통해서만 검증할 수 있다. 세굴 공식들의 산정 결과를 현장 실측자료와 비교하는 연구는 그 동안 다양하게 시도되었으나, 통일된 결론에는 도달하지 못하고 있다. 본 연구에서는 기존의 세굴깊이 산정 시 일반적으로 사용되어지고 있는 세굴공식들 중 소하천 교량 규모에 적용 가능한 공식들을 선별하고, 각 세굴심 추정공식에 속한 변수별 특성분석을 위하여, 5가지의 독립변수를 설정하여 국부세굴의 현장 측정값과 예측공식의 비교결과에 대하여 불일치율을 비교분석하였다. 그 결과, 모든 공식들의 불일치율의 기하 평균이 1보다 큰 것을 보여주고 있다. 즉, 모든 공식들이 과대 추정의 의미로 정확성면에서 우수한 공식들은 불일치율의 기하 평균이 1에 가깝고 기하 표준편차가 작은 공식들이 나타났으며, 이런 점에서 Froehlich 공식, Inglis-Poona II, Blench-Inglis I, Breusers 공식 등의 기하평균이 1에 가장 근접한 결과를 나타내었다. 각 세굴공식 세굴심 산정결과의 불일치율을 각각 5가지의 변수별로 도시하여 분석하였으며, 그 결과로 소하천에 대하여 적용 가능한 공식과 소하천에 적용 시에는 과다추정의 우려가 있는 공식으로 분류되어 면밀한 검토가 필요할 것으로 판단된다.

  • PDF

A methodology for Identification of an Air Cavity Underground Using its Natural Poles (물체의 고유 Pole을 이용한 지하 속의 빈 공간 식별 방안)

  • Lee, Woojin
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.6
    • /
    • pp.566-572
    • /
    • 2021
  • A methodology for the identification and coordinates estimation of air cavities under urban ground or sandy soil using its natural poles and natural resonant frequencies is presented. The potential of this methodology was analyzed. Simulation models of PEC (Perfect Electric Conductor)s with various shapes and dimensions were developed using an EM (Electromagnetic) simulator. The Cauchy method was applied to the obtained EM scattering response of various objects from EM simulation models. The natural poles of objects corresponding to its instinct characterization were then extracted. Thus, a library of poles can be generated using their natural poles. The generated library of poles provided the possibility of identifying a target by comparing them with the computed natural poles from a target. The simulation models were made assuming that there is an air cavity under urban ground or sandy soil. The response of the desired target was extracted from the electromagnetic wave scattering data from its simulation model. The coordinates of the target were estimated using the time delay of the impulse response (peak of the impulse response) in the time domain. The MP (Matrix Pencil) method was applied to extract the natural poles of a target. Finally, a 0.2-m-diameter spherical air cavity underground could be estimated by comparing both the pole library of the objects and the calculated natural poles and the natural resonant frequency of the target. The computed location (depth) of a target showed an accuracy of approximately 84 to 93%.

Estimates of Basin-Specific Oxygen Utilization Rates (OURs) in the East Sea (Sea of Japan) (동해 각 분지의 수층내 산소 소모율 추정)

  • Kim, Il-Nam;Min, Dong-Ha;Lee, Tong-Sup
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.15 no.2
    • /
    • pp.86-96
    • /
    • 2010
  • The oxygen utilization rate (OUR) is one of the crucial parameters for ocean carbon cycling and climate models. However, parameterization of OUR in the East Sea (Sea of Japan) is yet to be established. We estimated the basin-specific OURs in the East Sea and fitted them with exponential functions with depth by using pCFC- 12 age and apparent oxygen utilization (AOU) measured in summer 1999. The estimated OURs are higher in the upper water column and decrease with depth, in general. The vertical distributions of the estimated OURs in the Western and Eastern Japan Basins (WJB & EJB) are very similar. The OURs in the Ulleung Basin (UB) varied greatly depending on whether the surface layer (0~200 m) data are included in the OUR estimate or not. Apparently, weaker oxygen consumption occurs in the deep layer of Yamato Basin (YB). The ranges of the OURs between 200 m and 2000 m at WJB, EJB, UB, and YB are 8.15~0.83, 8.11~0.68, 5.29~0.73, and 7.31~0.06 ${\mu}mol$ $kg^{-1}$ $yr^{-1}$, respectively. Consideration of the wintertime surface water oxygen disequilibrium condition in estimating the OUR will be necessary in the future study.

Bond Characteristics and Splitting Bond Stress on Steel Fiber Reinforced Reactive Powder Concrete (강섬유로 보강된 반응성 분체 콘크리트의 부착특성과 쪼갬인장강도)

  • Choi, Hyun-Ki;Bae, Baek-Il;Choi, Chang-Sik
    • Journal of the Korea Concrete Institute
    • /
    • v.26 no.5
    • /
    • pp.651-660
    • /
    • 2014
  • Structural members using ultra high strength concrete which usually used with steel fiber is designed with guidelines based on several investigation of SF-RPC(steel fiber reinforced reactive powder concrete). However, there are not clear design method yet. Especially, SF-RPC member should be casted with steam(90 degree delicious) and members with SF-RPC usually used with precast members. Although the most important design parameter is development method between SF-RPC and steel reinforcement(rebar), there are no clear design method in the SF-RPC member design guidelines. There are many controversial problems on safety and economy. Therefore, in order to make design more optimum safe design, in this study, we investigated bond stress between steel rebar and SF-RPC according to test. Test results were compared with previously suggested analysis method. Test was carried out with direct pull out test using variables of compressive strength of concrete, concrete cover and inclusion ratio of steel fiber. According to test results, bond stress between steel rebar and SF-RPC increased with increase of compressive strength of concrete and concrete cover. Increasing rate of bond stress were decrease with increase of compressive strength of SF-RPC and concrete cover significantly. 1% volume fraction inclusion of steel fiber increase the bond stress between steel rebar and SF-RPC with two times but 2% volume fraction cannot affect the bond stress significantly. There are no exact or empirical equations for evaluation of SF-RPC bond stress. In order to make safe bond design of SF-RPC precast members, previously suggested analysis method for bond stress by Tepfers were evaluated. This method have shown good agreement with test results, especially for steel fiber reinforced RPC.

Carbon Storage of Natural Pine and Oak Pure and Mixed Forests in Hoengseong, Kangwon (횡성지역 천연 소나무와 참나무류 순림 및 혼효임분의 탄소 저장량 추정)

  • Lee, Sue Kyoung;Son, Yowhan;Noh, Nam Jin;Heo, Su Jin;Yoon, Tae Kyung;Lee, Ah Reum;Sarah, Abdul Razak;Lee, Woo Kyun
    • Journal of Korean Society of Forest Science
    • /
    • v.98 no.6
    • /
    • pp.772-779
    • /
    • 2009
  • This study was conducted to estimate the carbon (C) contents in pure and mixed stands of pine (Pinus densiflora) and oak (Quercus spp.) trees for establishing the C inventory of forest ecosystems. A total of fifteen 20 m${\times}$20 m pure and mixed stands of pine and oak trees were chosen in natural forests in Hoengseong, Kangwon based on the basal area of all trees ${\geq}$ 5 cm DBH: three of 95% of pine and 5% oak trees [pine stand], three of 100% of oak trees [oak stand], and nine of 20 to 70% of pine and 80 to 30% of oak trees [mixed stand]. To estimate C contents in the study stands, biomass in vegetation, forest floor and coarse woody debris (CWD) were calculated and C concentrations in vegetation, forest floor, CWD and soil (0-30 cm) were analyzed. There was no significant difference in vegetation C contents among the stands; 147.6 Mg C/ha for the oak stand, 141.4 Mg C/ha for the pine stand and 115.8 Mg C/ha for the mixed stand. Forest floor C contents were significantly different among the stands (p<0.05); 12.7 Mg/ha for the pine stand, 9.9 Mg/ha for the oak stand, and 8.4 Mg/ha for the mixed stand. However, CWD C contents were not significantly different among the stands (p>0.05); 2.2 Mg/ha for the mixed stand, 1.7 Mg/ha for the oak stand, and 1.1 Mg/ha for the pine stand. Soil C contents up to 30 cm depth were not significantly different among the study stands; 44.4 Mg C/ha for the pine stand, 41.6 Mg C/ha for the mixed stand, and 33.3 Mg C/ha for the oak stand. Total ecosystem C contents were lower in the mixed stand than those in the pure stands, because vegetation C contents which occupied almost total ecosystem C contents were lower in the mixed stand than those in the pure stands; 199.6 Mg C/ha for the pine stand, 192.5 Mg C/ha for the oak stand and 169.1 Mg C/ha for the mixed stand. Lower vegetation C contents in the mixed stand might be influenced by interspecific competition between pine and oak trees and intraspecific competition among the oak trees resulted from high stand density. We suggest that forest management such as thinning to enhance C storage is indispensible for minimizing the competition in forest ecosystems.

Characteristic Assessment of Heavy Metals in Dusts Collected by the Air Filtration System at Subway Stations in Daegu, Korea (대구지역 지하철역사 공기여과필터 포집먼지에 함유된 중금속성분의 특성평가)

  • Do, Hwa-Seok;Song, Hee-Bong;Shin, Dong-Chan;Kwak, Jin-Hee;Lee, Myoung-Sook;Yoon, Ho-Suk;Kang, Hye-Jung;Phee, Young-Gyu
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.31 no.1
    • /
    • pp.42-50
    • /
    • 2009
  • Samples of subway dust were collected by the air filter system of 30 subway stations on Daegu subway line 1 in January 2008. Samples were sieved below 100 ${\mu}m$, and 14 elements were analyzed using ICP after acid extraction. Results obtained from the source assessment of trace elements using enrichment factor showed that Ca, Fe, K, Mg, Mn, Na, V were influenced by natural sources such as weathered rock and resuspended soil, while Cd, Cr, Cu, Ni, Pb and Zn were influenced by anthropogenic sources such as fuel combustion and waste incineration. Concentrations were remarkably higher in components from natural sources than in components from anthropogenic sources. Anthropogenic sources were significantly affected by indoor dusts than outdoor dusts. Results of pollution indices of heavy metals indicated that indoor dusts were more contaminated with heavy metal ions than outdoor dusts. The correlation analysis among trace elements indicated that components were much correlated in the order of natural sources-anthropogenic sources, anthropogenic sources-anthropogenic sources, natural sources-natural sources in both indoor and outdoor dusts. Trace element components of outdoor dusts were largely correlated than those of indoor dusts. In addition, indoor dusts were significantly affected by outdoor dusts rather than depth from the surface or the average daily number of subway passengers.

Investigation of Original Landscaping in the Vicinity of Yongyun and Hwahongmun in Suwon Hwaseong (수원 화성 용연(龍淵)과 화홍문 일곽의 원형경관 탐색)

  • Rho, Jae-Hyun;Choi, Jong-Hee;Shin, Sang-Sup
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.38 no.2
    • /
    • pp.94-108
    • /
    • 2010
  • The purpose of this study is to provide data for the restoration of 'Yongyun(龍淵)' and 'Hwahongmun(華虹門)' through an investigation of the vicinity of their original landscapes at the time of construction of Hwaseong in Suwon and through tracing the transformative process of the environments of this vicinity. The results are as follows; As identified by 'Yongyunjung(龍淵亭)' and 'Yongdugak(龍頭閣)', other names of Yongyun, 'Banghwasuryujung(訪花隨柳亭)', which was built on 'Yongduam', is a facility whose place identity is highlighted with a sense of unity with Yongyun. The south lakefront of Yongyun, bordering Banghwasuryujung, has boundaries that make the best use of the natural geographical features of Yongduam while the current circumference of Yongyun is comparatively shorter than its original state. The size of 'Joongdo(中島)', however, seems to be an example of apparent over-design complement and reorganize 'Joongdo', which had been restored larger than its original state at the time of restoration in the 1970s. The depth of 'Yongyun' was created to be lower than the actual depth, without consideration for its initial depth, as soil was accumulated through continuous flooding after it was created. It is assumed that the original drains which were installed about 10m inside the lake were created facing the stream. As regards the planting environment, a circular planting of willows was made in the outskirts of 'Yongyun', except the 'Yongduam' which is a pure forest, and a mix of 'Pinus densiflora', shrubbery and deciduous broad leaf trees was planted in 'Joongdo'. Of the plants growing in the area of this study, plant species introduced to Korea after Hwaseong was constructed are found, most of which provide interest and attraction. The old pine trees growing in a group once grew in the castle areas of the vicinity even in the 1920s, the period of Japanese occupation, but they disappeared from the area in the aftermath of subsequent urban development and the Korean War. Although restored to the site, the number and space taken up by these trees are insignificant compared to those of the original environment. On the basis of these results, the following is considered necessary for the true restoration of the vicinity of 'Yongyun' and 'Hwahongmun': First, the grounds of 'Yongyun' should be dredged deeply enough to expose the bedrock and should be recreated in the rough outline of a half moon by extension to the southwest toward 'Yongduam' and 'Hwahongmun', and the size of 'Joongdo' should be significantly reduced. Secondly, considering that most plant species, except the pine trees and wild trees in 'Yongduam', are non-native plants introduced in order to provide such attractions such as the appreciation of scenic areas, they should be replaced with native species, mainly with the pine trees which were utilized during the construction of Hwaseong. The weeping willows planted in the 'middle-island' should be relocated to the outskirts of 'Yongyun', and replaced with pine trees as the major trees and maple trees or deciduous broadleaf trees to fill in the gaps. Thirdly, exotic species such as the 'Pinus rigida' planted in a group around 'Banghwasuryujung' and 'Bugammun' and 'Pinus strobus' planted in the vicinity of Hwahongmun' should be removed.

Constructing Geological Cross-sections at Depth and Interpreting Faults Based on Limited Shallow Depth Data Analysis and Core Logging: Southern Section of the Yangsan Fault System, SE Korea (제한된 천부자료와 시추코어분석을 통한 심부지질단면도 작성과 단층 인지법: 한반도 남동부 양산단층대 주변에서의 적용)

  • Kim, Taehyung;Kim, Young-Seog;Lee, Youngmin;Choi, Jin-Hyuck
    • The Journal of Engineering Geology
    • /
    • v.26 no.2
    • /
    • pp.277-290
    • /
    • 2016
  • Deep geological cross-sectional data is generally not common nor easy to construct, because it is expensive and requires a great deal of time. As a result, geological interpretations at depth are limited. Many scientists attempt to construct geological cross-sections at depth using geological surface data and geophysical data. In this paper, we suggest a method for constructing cross-sections from limited geological surface data in a target area. The reason for this study is to construct and interpret geological cros-sections at depth to evaluate heat flow anomaly along the Yangsan fault. The Yangsan Fault passes through the south-eastern part of the Korean Peninsula. The cross-section is constructed from Sangbukmyeon to Unchonmyeon passing perpendicularly through the Yangsan Fault System trending NW-SE direction. The geological cross-section is constructed using the following data: (1) Lithologic distributions and main structural elements. (2) Extensity of sedimentary rock and igneous rock, from field mapping. (3) Fault dimension calculated based on geometry of exposed surface rupture, and (4) Seismic and core logging data. The Yangsan Fault System is composed of the Jain fault, Milyang fault, Moryang fault, Yangsan fault, Dongnae fault, and Ingwang fault which strike NNE-SSW. According to field observation, the western section of the Yangsan fault bounded by igneous rocks and in the eastern section sedimentary rocks are dominant. Using surface fault length we infer that the Yangsan Fault System has developed to a depth of kilometers beneath the surface. According to seismic data, sedimentary rocks that are adjacent to the Yangsan fault are thin and getting thicker towards the east of the section. In this study we also suggest a new method to recognize faults using core loggings. This analysis could be used to estimate fault locations at different scales.