• Title/Summary/Keyword: 깊이 선량

Search Result 242, Processing Time 0.024 seconds

Development of 2.5D Electron Dose Calculation Algorithm (2.5D 전자선 선량계산 알고리즘 개발)

  • 조병철;고영은;오도훈;배훈식
    • Progress in Medical Physics
    • /
    • v.10 no.3
    • /
    • pp.133-140
    • /
    • 1999
  • In this paper, as a preliminary study for developing a full 3D electron dose calculation algorithm, We developed 2.5D electron dose calculation algorithm by extending 2D pencil-beam model to consider three dimensional geometry such as air-gap and obliquity appropriately. The dose calculation algorithm was implemented using the IDL5.2(Research Systems Inc., USA), For calculation of the Hogstrom's pencil-beam algorithm, the measured data of the central-axis depth-dose for 12 MeV(Siemens M6740) and the linear stopping power and the linear scattering power of water and air from ICRU report 35 was used. To evaluate the accuracy of the implemented program, we compared the calculated dose distribution with the film measurements in the three situations; the normal incident beam, the 45$^{\circ}$ oblique incident beam, and the beam incident on the pit-shaped phantom. As results, about 120 seconds had been required on the PC (Pentium III 450MHz) to calculate dose distribution of a single beam. It needs some optimizing methods to speed up the dose calculation. For the accuracy of dose calculation, in the case of the normal incident beam of the regular and irregular shaped field, at the rapid dose gradient region of penumbra, the errors were within $\pm$3 mm and the dose profiles were agreed within 5%. However, the discrepancy between the calculation and the measurement were about 10% for the oblique incident beam and the beam incident on the pit-shaped phantom. In conclusions, we expended 2D pencil-beam algorithm to take into account the three dimensional geometry of the patient. And also, as well as the dose calculation of irregular field, the irregular shaped body contour and the air-gap could be considered appropriately in the implemented program. In the near future, the more accurate algorithm will be implemented considering inhomogeneity correction using CT, and at that time, the program can be used as a tool for educational and research purpose. This study was supported by a grant (#HMP-98-G-1-016) of the HAN(Highly Advanced National) Project, Ministry of Health & Welfare, R.O.K.

  • PDF

The Measurements of Energy and Distribution of Scattered Electrons in Therapeutic X-Ray Beam (치료 방사선 선속(Flux)에 포함된 산란전자의 분포와 에너지 측정)

  • Vahc, Young-Woo;Park, Kyung-Ran;Ohyun Kwon;Lee, Yong-Ha;Kim, Tae-Hong;Kim, Sookil
    • Progress in Medical Physics
    • /
    • v.13 no.1
    • /
    • pp.1-8
    • /
    • 2002
  • Accurate knowledge of the distribution of contamination electrons ( which comes from mainly gantry head by Compton scattering, pair production, and tray: henceforth called leptons ) at the surface and in the first centimeters of tissue is essential for the clinical practice of radiation oncology. Such lepton tends to reduce or eliminate the ‘skin-sparing’ advantage of megavoltage photon beam radiotherapy, This information is needed to prescribe a absorbed dose to a skin volume at a few millimeter depth in high energy therapeutic radiation photon beam All experiments were done with 15 MV photon beam from a dual energy linear accelerator (Clinac 1800, Varian). Field size is defined by ranged from 10.0$\times$10.0 to 30.0$\times$30.0 $\textrm{cm}^2$. The absorbed dose and distribution of leptons in therapeutic radiation beam (15 MV) are investigated by means of variable blocked beams of 30.0$\times$30.0 $\textrm{cm}^2$ and dose beam profiles partly removed leptons with a copper plate. A numerous leptons mainly are distributed as shape of broad cone in the central photon beam and leptons path length in the water are shorter than 2.5 cm because of the leptons energy having around 3.0 MeV. These results clearly appears that the subtraction of leptons from the total depth dose curve not only lower the absolute dose in the buildup region and surface dose, it also causes a shift of d$_{max}$ to a deeper depth.

  • PDF

Analysis of Tissue Equivalent Characteristics of Agar Phantom for Hyperthermia Therapy (온열종양치료 한천 팬텀의 조직등가 특성 분석)

  • Jeong-Geun Park;Kyeong-Hwan Jeong;Jeong-Min Seo
    • Journal of the Korean Society of Radiology
    • /
    • v.17 no.6
    • /
    • pp.985-991
    • /
    • 2023
  • A tissue-equivalent phantom is necessary for quality control of hyperthermia therapy. However, since there is no phantom for this purpose, phantoms made from agar are being used in various studies. The tissue-equivalent properties of the agar phantom were confirmed by comparison with the tissue-equivalent material bolus in this study. CT images of the agar phantom and bolus were acquired, and tissue equivalent characteristics were analyzed with image analysis and dose calculation using a computerized radiation therapy planning system. The average pixel value was 96.960±10.999 in bolus, 108.559±8.233 in 3% agar phantom, and 111.844±8.651 in 4% agar phantom. Using the SSD technique, 100 cGy was prescribed at a depth of 1.5 cm and 6 MV X -ray was set to irradiated to 10x10 cm2, and the absorbed dose according to depth was calculated from the central axis of the beam. The intraclass correlation coefficient of dose distribution of bolus, 3% agar phantom, and 4% agar phantom was 0.979 (p<.001, 95%CI .957-.991). The density (g/cm3) at the point where the absorbed dose was calculated was 0.990±0.020 at the bolus, 1.018±0.020 at the 3% agar phantom, and 1.035±0.024 at the 4% agar phantom. In this study, the internal density distribution and uniformity of the agar phantom were confirmed to be appropriate as a tissue equivalent material by analysis of CT images and a computerized radiation therapy planning system.

Analysis of dosimetric leaf gap variation on dose rate variation for dynamic IMRT (동적 세기조절방사선 치료 시 선량률 변화에 따른 선량학적엽간격 변화 분석)

  • Yang, Myung Sic;Park, Ju Kyeong;Lee, Seung Hun;Kim, Yang Su;Lee, Sun Young;Cha, Seok Yong
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.28 no.1
    • /
    • pp.47-55
    • /
    • 2016
  • To evaluate the position accuracy of the MLC. This study analyzed the variations of the dosimetric leaf gap(DLG) and MLC transmission factor to reflect the location of the MLC leaves according to the dose rate variation for dynamic IMRT. We used the 6 MV and 10 MV X-ray beams from linear accelerator with a Millennium 120 MLC system. We measured the variation of DLG and MLC transmission factor at depth of 10 cm for the water phantom by varying the dose rate to 200, 300, 400, 500 and 600 MU/min using the CC13 and FC-65G chambers. For 6 MV X-ray beam, a result of measuring based on a dose rate 400 MU/min by varying the dose rate to 200, 300, 400, 500 and 600 MU/min of the difference rate was respectively -2.59, -1.89, 0.00, -0.58, -2.89%. For 10 MV X-ray beam, the difference rate was respectively ?2.52, -1.69, 0.00, +1.28, -1.98%. The difference rate of MLC transmission factor was in the range of about ${\pm}1%$ of the measured values at the two types of energy and all of the dose rates. This study evaluated the variation of DLG and MLC transmission factor for the dose rate variation for dynamic IMRT. The difference of the MLC transmission factor according to the dose rate variation is negligible, but, the difference of the DLG was found to be large. Therefore, when randomly changing the dose rate dynamic IMRT, it may significantly affect the dose delivered to the tumor. Unless you change the dose rate during dynamic IMRT, it is thought that is to be the more accurate radiation therapy.

  • PDF

The dosimetric Properties of Electron Beam Using Lyon Intraoperative Device for Intraoperative Radiation Therapy (LID (Lyon Intraoperative Device) 이용한 수술중 방사선치료시 전자선의 선량분포 특성)

  • Kim Kye Jun;Park Kyung Ran;Lee Jong Young;Kim Hie Yeon;Sung Ki Jocn;Chu Sung Sil
    • Radiation Oncology Journal
    • /
    • v.10 no.1
    • /
    • pp.85-93
    • /
    • 1992
  • We have studied the dosimetric properties of electron beam using Lyon intraoperative device for intraoperative radiation therapy. The dosimetry data had compiled in such a way that a quick and correct decision regarding the cone shape, energy, and accurate calculations could be made. Using 3 dimensional water phantom, we have got the following data: cone output ratios, surface dose, $d_{max}$, $d_{90}$, flatness, symmetry, beam profiles, isodose curve, and SSD correction factors. The cone output ratios were measured with straight and bevelled cone, respectively. As the cone size and the energy were reduced, the cone output ratios decreased rapidly. With the flattening filter, the surface dose increased by electron beam to $85.3\%$, $89.2\%$, and $93.4\%$, for 6 MeV, 9 MeV, and 12 MeV, respectively. It is important to increase the surface dose to $90\%$ or more. Inspite of diminishing dose rate and beam penetration, this flattening filter increases the treatment volume significantly. With the combination of the three levels collimation and the flattening filter, we achieved good homogeneity of the beam and better flatness and the diameter of the 90$\%$ isodose curve was increased. It is important to increase the area that is included in the $90\%$ isodose level. The value of measured and calculated SSD correction factors did not agree over the clinically important range from 100 cm to 110 cm.

  • PDF

Analysis of the Respiratory Motion Effects on Dose Distribution Using TLD Phantom (열형광선량계용 팬톰을 이용한 호흡 움직임에 따른 선량분포의 평가)

  • Hong, Ju-Young;Kim, Yon-Lae;Rah, Jeong-Eun;Chung, Jin-Beom;Suh, Tae-Suk
    • Progress in Medical Physics
    • /
    • v.17 no.4
    • /
    • pp.187-191
    • /
    • 2006
  • The purpose of this study was to measure the dose distribution from the moving phantom for the respiratory motion. The phantom for TLD measurement was designed and built for this study based on the multiple plates for placing TLD and film. The TLDs may be inserted at 3 mm intervals in each TLD plate. For the measurements, TLD plate was inserted into the phantom at 1.5 cm ($d_{max}$) depth, and phantom was allowed to move in SI directions in the range of 1 to 2 cm with 0.5 cm interval for 6 MV X-ray beams. Penumbra and FWHM were measured at both moving state and compared stationary. It was found that penumbra increased 0.71 cm at stationary and 2.10 cm at moving state in 2 cm movement, and that FWHM are 7.52 cm for stationary state and 7.02 cm for moving state (2 cm movement). In this study, film was used to compared with TLD results of measurements and simitar results were observed. Therefore, it is expected that TLD moving phantom may be useful for the treatment of tumors that move due to the respiratory motion.

  • PDF

Evaluation of Absorbed Dose and Skin Dose with MDCT Using Ionization Chamber and TLD (이온 전리함 및 TLD 법을 이용한 Multi-Detector Computed Tomography의 흡수선량 및 체표면 선량 평가)

  • Jeon, Kyung Soo;Oh, Young Kee;Baek, Jong Geun;Kim, Ok Bae;Kim, Jin Hee;Choi, Tae Jin;Jeong, Dong Hyeok;Kim, Jeong Kee
    • Progress in Medical Physics
    • /
    • v.24 no.1
    • /
    • pp.35-40
    • /
    • 2013
  • Recently, the uses of Multi-Detector Computed Tomography (MDCT) for radiation treatment simulation and planning which is used for intensity modulated radiation therapy with high technique are increasing. Because of the increasing uses of MDCT, additional doses are also increasing. The objective of this study is to evaluate the absorbed dose of body and skin undergoing in MDCT scans. In this study, the exposed dose at the surface and the center of the cylindrical water phantom was measured using an pencil ionization chamber, 30 cc ionization chamber and TL Powder. The results of MDCT were 31.84 mGy, 33.58 mGy and 32.73 mGy respectively. The absorbed dose at the surface showed that the TL reading value was 33.92 mGy from MDCT. These results showed that the surface dose was about 3.5% from the MDCT exposure higher than a dose which is located at the center of the phantom. These results mean that the total exposed dose undergoing MDCT 4 times (diagnostic, radiation therapy planning, follow-up et al.), is about 14 cGy, and have to be considered significantly to reduce the exposed dose from CT scan.

Neutron Generation from a 24 MV Medical Linac (24 MV 의료용 선형가속기의 중성자 발생에 관한 연구)

  • Jeong Dong Hyeok;Kang Jeong Ku;Lee Jeong Ok
    • Progress in Medical Physics
    • /
    • v.16 no.2
    • /
    • pp.97-103
    • /
    • 2005
  • The energy spectra and dose calculations were performed for secondary neutrons from a 24 MV LINAC using MCNPX code (V2, 4, 0). The energy spectra for neutrons and photons emitted from the LINAC head, and absorbed dose to water were calculated in water phantom. The absorbed doses calculated with Monte Carlo were $0.66\~0.35$ mGy/photon Gy at the surface to d=5 cm, and calculated with interaction data was 0.52 mGy/photon Gy at the depth of electron equilibrium in water. We have shown that this work can be applied to dose estimation of neutrons from high energy LINAC through the comparison of our results with other results.

  • PDF

Evaluation of Scattered Dose to the Contralateral Breast by Separating Effect of Medial Tangential Field and Lateral Tangential Field: A Comparison of Common Primary Breast Irradiation Techniques (유방암 접선조사 치료 방법에 대한 반대쪽 유방에서의 산란선량 평가)

  • Ban, Tae-Joon;Jeon, Soo-Dong;Kwak, Jung-Won;Baek, Geum-Mun
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.24 no.2
    • /
    • pp.183-188
    • /
    • 2012
  • Purpose: The concern of improving the quality of life and reducing side effects related to cancer treatment has been a subject of interest in recent years with advances in cancer treatment techniques and increasing survival time. This study is an analysis of differing scattered dose to the contralateral breast using common different treatment techniques. Materials and Methods: Eclipse 10.0 (Varian, USA) based $30^{\circ}$ EDW (Enhanced dynamic wedge) plan, $15^{\circ}$ wedge plan, $30^{\circ}$ wedge plan, Open beam plan, FiF (field in field) plan were established using CT image of breast phantom which in our hospital. Each treatment plan were designed to exposure 400 cGy using CL-6EX (VARIAN, USA) and we measured scattered dose at 1 cm, 3 cm, 5 cm, 9 cm away from medial side of the phantom at 1 cm depth using ionization chamber (FC 65G, IBA). We carried out measurement by separating effect of medial tangential field and lateral tangential field and analyze. Results: The evaluation of scattered dose to contralateral breast, $30^{\circ}$ EDW plan, $15^{\circ}$ wedge plan, $30^{\circ}$ wedge plan, Open beam plan, FIF plan showed 6.55%, 4.72%, 2.79%, 2.33%, 1.87% about prescription dose of each treatment plan. The result of scattered dose measurement by separating effect of medial tangential field and lateral tangential field results were 4.94%, 3.33%, 1.55%, 1.17%, 0.77% about prescription dose at medial tangential field and 1.61%, 1.40%, 1.24%, 1.16%, 1.10% at lateral tangential field along with measured distance. Conclusion: In our experiment, FiF treatment technique generates minimum of scattered dose to contralateral breast which come from mainly phantom scatter factor. Whereas $30^{\circ}$ wedge plan generates maximum of scattered doses to contralateral breast and 3.3% of them was scattered from gantry head. The description of treatment planning system showed a loss of precision for a relatively low scatter dose region. Scattered dose out of Treatment radiation field is relatively lower than prescription dose but, in decision of radiation therapy, it cannot be ignored that doses to contralateral breast are related with probability of secondary cancer.

  • PDF

Comparative Studies on Absorbed Dose by Geant4-based Simulation Using DICOM File and Gafchromic EBT2 Film (DICOM 파일을 사용한 Geant4 시뮬레이션과 Gafchromic EBT2 필름에 의한 인체 내 흡수선량 비교 연구)

  • Mo, Eun-Hui;Lee, Sang-Ho;Ahn, Sung-Hwan;Kim, Chong-Yeal
    • Progress in Medical Physics
    • /
    • v.24 no.1
    • /
    • pp.48-53
    • /
    • 2013
  • Monte Carlo method has been known as the most accurate method for calculating absorbed dose in the human body, and an anthropomorphic phantom has been mainly used as a method of simulating internal organs for using such a calculation method. However, various efforts are made to extract data on several internal organs in the human body directly from CT DICOM files in recent Monte Carlo calculation using Geant4 code and to use by converting them into the geometry necessary for simulation. Such a function makes it possible to calculate the internal absorbed dose accurately while duplicating the actual human anatomical structure. Thus, this study calculated the absorbed dose in the human body by using Geant4 associating with DICOM files, and aimed to confirm the usefulness by compare the result with the measured dose using a Gafchromic EBT2 film. This study compared the dose calculated using simulation and the measured dose in beam central axis using the EBT2 film. The results showed that the range of difference was an average of 3.75% except for a build-up region, in which the dose rapidly changed from skin surface to the depth of maximum dose. In addition, this study made it easy to confirm the target absorbed dose by internal organ and organ through the output of the calculated value of dose by CT slice and the dose value of each voxel in each slice. Thus, the method that outputs dose value by slice and voxel through the use of CT DICOM, which is actual image data of human body, instead of the anthropomorphic phantom enables accurate dose calculations of various regions. Therefore, it is considered that it will be useful for dose calculation of radiotherapy planning system in the future. Moreover, it is applicable for currently-used several energy ranges in current use, so it is considered that it will be effectively used in order to check the radiation absorbed dose in the human body.