• 제목/요약/키워드: 깊이인식

검색결과 430건 처리시간 0.037초

조명에 강인한 얼굴인식을 위한 텍스쳐 정보와 깊이 에지 기반의 퓨전 벡터 생성기법 (Fusing texture and depth edge information for face recognition)

  • 안병우;성원제;이준호
    • 한국정보보호학회:학술대회논문집
    • /
    • 한국정보보호학회 2006년도 하계학술대회
    • /
    • pp.246-250
    • /
    • 2006
  • 얼굴의 중요한 특징부분을 잘 나타내는 깊이 에지 정보를 사용하면 표정과 조명변화로 인한 얼굴 픽셀의 밝기 값 변화에 대해 강인한 특징벡터를 생성할 수 있다. 본 논문에서는 깊이 에지(depth edge)를 이용한 새로운 특징벡터를 제안하고 그 유용성에 대하여 실험하였다. 새롭게 제안한 특징벡터는 얼굴의 깊이 에지 영상을 수평과 수직 방향으로 투영하여 얻어지는 에지 강도 히스토그램을 이용하기 때문에 얼굴의 움직임으로 인한 변형에 영향을 받지 않는다. 또한, 실시간 검출과 인식이 매우 용이하다. 제안한 깊이 에지 기반 특징벡터와 백색광 영상의 픽셀 값 기반 특징벡터에 대해 부공간 투영기반의 얼굴인식 알고리즘을 적용하여 성능을 비교 평가하였다. 실험 결과, 얼굴의 깊이 에지에 기반한 얼굴인식이 기존의 백색광만을 이용한 방법에 비해 높은 인식성능을 보였다

  • PDF

깊이 영상을 이용한 지역 이진 패턴 기반의 얼굴인식 방법 (Face Recognition Method Based on Local Binary Pattern using Depth Images)

  • 권순각;김흥준;이동석
    • 한국산업정보학회논문지
    • /
    • 제22권6호
    • /
    • pp.39-45
    • /
    • 2017
  • 기존의 색상기반 얼굴인식 방법은 조명변화에 민감하며, 위변조의 가능성이 있기 때문에 다양한 산업분야에 적용되기 어려운 문제가 있었다. 본 논문에서는 이러한 문제를 해결하기 위해 깊이 영상을 이용한 지역 이진 패턴(LBP) 기반의 얼굴인식 방법을 제안한다. 깊이 정보를 이용한 얼굴 검출 방법과 얼굴 인식을 위한 특징 추출 및 매칭 방법을 구현하고, 모의실험 결과를 바탕으로 제안된 방식의 인식 성능을 나타낸다.

사용자-객체 상호작용을 위한 복잡 배경에서의 객체 인식

  • 배주한;황영배;최병호;김효주
    • 정보와 통신
    • /
    • 제31권3호
    • /
    • pp.46-53
    • /
    • 2014
  • 사용자-객체 상호작용을 위해서는 영상 내 객체의 종류와 위치를 정확하게 파악하여 사용자가 객체에 관련된 행동을 취할 경우, 그에 맞는 상호작용을 수행해야 한다. 이러한 객체인식에 널리 사용되는 지역 불변 특징량 기반의 방법론은 복잡한 배경이나 균일 물체에 대하여 잘못된 매칭으로 인식률이 저하된다. 본고에서는 이를 해결하기 위해, 컬러와 깊이 근접도 기반 깊이 계층을 나누고, 복잡 배경으로부터 생기는 잘못된 특징점 대응을 최소화 하기 위해 각 깊이 계층과 인식 물체 영상간의 특징점 대응을 수행한다. 또한, 각 깊이 계층영역에서 색상 히스토그램 재투영으로 객체의 위치를 추정하고 추정 영역과 인식 물체 영상간의 생상 및 깊이 유사도를 판단한다. 최종적으로, 복잡 배경 효과를 최소화한 특징점 대응의 수, 색상 및 컬러 유사도를 고려하여 신뢰도를 측정하여 객체를 인식하게 되며, 이를 통해 복잡한 배경에서도 사용자와 객체간의 유연한 상호작용이 가능해진다.

3D Face Recognition using Local Depth Information

  • 이영학;심재창;이태홍
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제29권11호
    • /
    • pp.818-825
    • /
    • 2002
  • 얼굴의 깊이 정보는 얼굴 인식에서 가장 중요한 요소이다. 3차원 얼굴 영상은 깊이 정보를 잘 나타내므로 얼굴의 깊이 값을 비교하는데 아주 유용하다. 얼굴 전체에 대한 처리는 많은 계산량과 데이터 량을 포함해야 하는 문제점이 있다. 따라서 본 논문에서는 얼굴의 국부적인 영역들에 대한 3차원 깊이 값을 이용하여 인식하였다. 3D 레이저 스캐너로 입력된 3차원 얼굴 영상으로부터 어떤 깊이에 있는 등고선 영역을 추출한 후, 이를 영역별로 취하면 국부적인 얼굴 깊이에 대한 특징을 잘 반영하게 된다. 얼굴의 가장 중심인 코를 기준점으로 깊이 영역에 대한 등고선 영역을 추출하며, 얼굴의 깊이를 고려한 국부적 깊이 정보를 다중 특징 벡터를 이용하여 얼굴을 인식한다. 다중 특징 벡터는 벡터 수가 적으면서 얼굴의 지역적 깊이 특성을 잘 나타내므로 간단한 방법으로 높은 인식률을 얻을 수 있었다.

2차원 안면인식의 취약성 보안 방안 설계 (Design of 2D face recognition security planning to vulnerability)

  • 이재웅;장종욱
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2017년도 춘계학술대회
    • /
    • pp.243-245
    • /
    • 2017
  • 본 논문에서는 많은 연구가 이루어지고 있는 안면인식 기술에서 2차원에 대한 취약점으로 깊이데이터를 받아 안면인식 기술의 보안성을 높였다. 본 논문은 이에 2차원 안면인식에 대한 취약점인 깊이 굴곡데이터가 없어 사진으로도 보안성을 허무는 단점을 사람들 개별의 습관성을 지닌 눈 깜박임에 대한 데이터를 받아오고 또한, 양 측면 이미지의 추가 데이터를 통하여 깊이데이터를 측정하지 않아도 깊이 데이터에 대한 정보를 받아 깊이카메라를 사용하지 않아도, 안면인식 보안성을 올려 주는 새로운 패턴을 분석하여, 장비를 줄여줌으로써, 원가 절감효과를 기대한다.

  • PDF

인접 부위의 깊이 차를 이용한 3차원 얼굴 영상의 특징 추출 (Facial Feature Localization from 3D Face Image using Adjacent Depth Differences)

  • 김익동;심재창
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제31권5호
    • /
    • pp.617-624
    • /
    • 2004
  • 본 연구에서는 3차원 얼굴 데이타에서 인접 부위의 깊이 차를 이용하여 얼굴의 주요 특징을 추출해 내는 방법을 제안한다. 인간은 사물의 특정 부분의 깊이 정보를 인식하는데 있어서 인접 부위와의 깊이 정보를 비교하고, 이를 바탕으로 깊이 값에 의한 대조가 두드러진 정도에 따라 상대적으로 깊이가 깊고 얕음을 지각하게 된다. 이런 인식 원리를 얼굴의 특징 추출에 적용하여 간단한 연산 과정을 통해 신뢰성 있고, 빠른 얼굴의 특징 추출이 가능하다. 인접 부위의 깊이 차는 수평방향과 수직방향으로 각각 일정 거리를 둔 지점에서의 두 지점간의 깊이 차로 생성된다. 생성된 수평, 수직 방향으로 인접 깊이 차와 입력된 3차원 얼굴 영상을 분석하여 3차원 얼굴 영상에서 가장 주된 특징이 되는 코 영역을 추출하였다.

효율적인 컴퓨터 비전 시스템을 위한 깊이 영상 안정화 방법의 하드웨어 구현 (Hardware Implementation of Depth Image Stabilization Method for Efficient Computer Vision System)

  • 김근준;강봉순
    • 한국정보통신학회논문지
    • /
    • 제19권8호
    • /
    • pp.1805-1810
    • /
    • 2015
  • 깊이 영상에 대한 접근성이 용이해지면서 다양한 연구 분야에서 깊이 센서를 활용하고 있다. 컴퓨터 비전의 모션인식 분야에서도 깊이 영상을 이용한 연구들이 진행되고 있다. 모션을 정확히 인식하기 위해서는 안정적인 데이터를 활용할 수 있어야 하지만 깊이 센서는 노이즈를 포함한다. 이러한 노이즈는 모션 인식 시스템의 성능에 영향을 줄 수 있기 때문에 효과적으로 노이즈를 억제하는 방법이 필요하다. 본 논문에서는 하드웨어를 사용하여 깊이 센서에서 입력되는 깊이 영상에 시간 영역과 공간 영역에서 안정화를 수행함으로써 깊이 영상을 안정화하는 하드웨어를 제안한다. 바닥 제거 알고리즘에 깊이 영상 안정화를 적용하여 노이즈를 억제한 깊이 영상 안정화가 시스템의 신뢰도 향상에 기여할 수 있음을 확인하고 구현한 하드웨어를 FPGA와 APU를 이용해 실시간 동작을 확인하였으며 설계한 하드웨어는 최대 202.184MHz에서 동작할 수 있다.

신체 부분 포즈를 이용한 깊이 영상 포즈렛과 제스처 인식 (Depth Image Poselets via Body Part-based Pose and Gesture Recognition)

  • 박재완;이칠우
    • 스마트미디어저널
    • /
    • 제5권2호
    • /
    • pp.15-23
    • /
    • 2016
  • 본 논문에서는 신체 부분 포즈를 이용한 깊이 영상 포즈렛과 제스처를 인식하는 방법을 제안한다. 제스처는 순차적인 포즈로 구성되어 있기 때문에, 제스처를 인식하기 위해서는 시계열 포즈를 획득하는 것에 중점을 두고 있어야 한다. 하지만 인간의 포즈는 자유도가 높고 왜곡이 많기 때문에 포즈를 정확히 인식하는 것은 쉽지 않은 일이다. 그래서 본 논문에서는 신체의 전신 포즈를 사용하지 않고 포즈 특징을 정확히 얻기 위해 부분 포즈를 사용하였다. 본 논문에서는 16개의 제스처를 정의하였으며, 학습 영상으로 사용하는 깊이 영상 포즈렛은 정의된 제스처를 바탕으로 생성하였다. 본 논문에서 제안하는 깊이 영상 포즈렛은 신체 부분의 깊이 영상과 해당 깊이 영상의 주요 3차원 좌표로 구성하였다. 학습과정에서는 제스처를 학습하기 위하여 깊이 카메라를 이용하여 정의된 제스처를 입력받은 후, 3차원 관절 좌표를 획득하여 깊이 영상 포즈렛이 생성되었다. 그리고 깊이 영상 포즈렛을 이용하여 부분 제스처 HMM을 구성하였다. 실험과정에서는 실험을 위해 깊이 카메라를 이용하여 실험 영상을 입력받은 후, 전경을 추출하고 학습된 제스처에 해당하는 깊이 영상 포즈렛을 비교하여 입력 영상의 신체 부분을 추출한다. 그리고 HMM을 적용하여 얻은 결과를 이용하여 제스처 인식에 필요한 부분 제스처를 확인한다. 부분 제스처를 이용한 HMM을 이용하여 효과적으로 제스처를 인식할 수 있으며, 관절 벡터를 이용한 인식률은 약 89%를 확인할 수 있었다.

마커 인식을 이용한 깊이 영상 기반 군집로봇 대형제어 (Depth image Based Formation Control for Swarm Robots Using Marker Recognition)

  • 최승엽;탁명환;주영훈
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2015년도 제46회 하계학술대회
    • /
    • pp.1325-1326
    • /
    • 2015
  • 본 논문에서는 마커 인식을 이용한 깊이 영상 기반 군집로봇 대형제어 방법을 제안한다. 제안한 방법은 먼저, follower 로봇들의 입력 영상에서 마커 인식 알고리즘을 이용하여 마커를 인식 한 뒤 인식된 마커를 분석하여 등록된 ID를 찾는다. 검출된 마커의 ID가 leader로봇의 ID일 경우 해당 마커의 위치와 기울기 값을 깊이 영상 센서로부터들어오는 깊이 정보를 통해 계산 한 뒤 마커의 위치와 기울기를 이용하여 대형제어를 한다. 마지막으로 제안한 알고리즘을 실제 로봇을 이용한 대형 제어실험을 통해 응용 가능성을 증명한다.

  • PDF

깊이 영상 기반 정적 수화 인식 시스템 (Static Sign Language Recognition System Using Depth Camera)

  • 김기상;최형일
    • 한국컴퓨터정보학회:학술대회논문집
    • /
    • 한국컴퓨터정보학회 2014년도 제50차 하계학술대회논문집 22권2호
    • /
    • pp.323-326
    • /
    • 2014
  • 본 논문에서는 깊이 카메라를 이용한 사용자의 손 모양, 특히 수화를 인식하는 방법에 대해 제안한다. 손 모양 인식은 손가락 검출과 손 인식으로 크게 2가지로 나눌 수 있다. 손가락 검출을 위해 본 시스템에서는 Distance Transform을 이용하여 손의 뼈대를 검출 하고, Convex Hull을 통해 손가락을 검출하는 방법을 제안한다. 뼈대 검출은 보다 정확한 손가락을 검출할 수 있는 장점이 생긴다. 손 인식에는 손 중심과 손가락의 길이, 손의 축, 손가락의 축, 팔 중심의 위치 등을 이용하여 Decision Tree를 생성하고, 반복적 검사를 통해 인식의 오류율을 줄였다. 실험결과에서는 수화 인식이 성공적으로 잘 인식 되었다는 것을 보인다.

  • PDF