• Title/Summary/Keyword: 깊이선량분포

Search Result 109, Processing Time 0.027 seconds

Evaluation of Dose Distribution of 6 MV X-ray using Optical Dosimetry (광 도시메트리시스템을 이용한 치료용 6 MV X선 선량분포 평가)

  • Kim, Sunghwan
    • Journal of the Korean Society of Radiology
    • /
    • v.13 no.7
    • /
    • pp.925-932
    • /
    • 2019
  • In this paper, we developed optical dosimetry system with a plastic scintillator, a commercial 50 mm, f1.8 lens, and a commercial high-sensitivity CMOS (complementary metal-oxide semiconductor) camera. And, the correction processors of vignetting, geometrical distortion and scaling were established. Using the developed system, we can measured a percent depth dose, a beam profile and a dose linearity for 6 MV medical LINAC (Linear Accelerator). As results, the optically measured percent depth dose was well matched with the measured percent depth dose by ion-chamber within 2% tolerance. And the determined flatness was 2.8%. We concluded that the optical dosimetry system was sufficient for application of absorbed dose monitoring during radiation therapy.

A Study on the Effects of Wedge Filter in Peripheral Dose Distribution (Wedge Filter가 주변선량분포에 주는 영향에 관한 연구)

  • Kang, Wee-Saing;Kim, Il-Han;Park, Charn-Il
    • Radiation Oncology Journal
    • /
    • v.3 no.2
    • /
    • pp.145-151
    • /
    • 1985
  • The peripheral dose distributions of wedge fields of Co-60 $\gamma-ray$ and 1 OMV x-ray were measured by the solid state detector controlled by means of semiautomatic water phentom system. The measurements were made on the principal plane parallel to the cross section of wedge filter (blade and ridge direction). For parallel motion of the detector to the beam axis the distance from the margin of radiation field at suface were 3, 5 and 10cm. For tranverse motion the depth of measurement were dm, 5, 10 and 15cm. The followings were drawn from the measurement. 1. The peripheral dose of the blade side of wedges was generally higher than that of the ridge side at symmetric point about beam axis. 2. In the superficial region phenomena of dose build-up appeared. 3. For Co-60 $\gamma-ray$ field, the peripheral dose did not monotonously decrease with the distance from the field margin but increase in some range, consequently showing a peak dose. 4. The peripheral dose did not only depend on radiation quality and field size, but also on wedge angle and wedge direction.

  • PDF

Evaluation of Electron Beam Dose Distribution by Age Diffusion Equation (연령 확산 이론에 의한 전자선의 조직내 선량분포 평가)

  • 추성실
    • Progress in Medical Physics
    • /
    • v.4 no.1
    • /
    • pp.29-39
    • /
    • 1993
  • Electron beams have found unique and complementary used in the treatment of cancer, but it's very difficult to delineate dose distribution, because of multi-collisions. Numerical solution is more usefull to describe electron distributed in tissue. A semi-empirical eqution is given for the dose at any point at various depths in water. This equation is a modificated model which was based on solutions of a general age diffusion equation. Parameters have been calulated from electron beams data with energies 6~18MeV form a LINAC for use in computerised dosimetry calculations. The depth doses and isodose curves are predicted as a function of the practical range, source skin distance and field size. Depth dose accuracy have been achieved 2% above 50% depth dose and 5% at lower doses, relative to maximum dose. Also, the shape of the isodose curves with the constrictions at higher dose and bulging ot lower values are accurately predicted. Computer calculated beams have been used to generate ever isodose distribution for certain clinical situations.

  • PDF

Dose distribution at junctional area for head and neck radiotherapy (두경부 방사선치료시 접합 조사면의 선량분포)

  • 김정기;김기환;오영기;김진기;정동혁;신교철;양광모;조문준;박인규
    • Progress in Medical Physics
    • /
    • v.12 no.2
    • /
    • pp.161-169
    • /
    • 2001
  • For the head and neck radiotherapy, the technique of half beam using independent collimator is very useful to avoid overlapping of fields particularly when the lateral neck fields are placed adjacent to anterior supraclavicular field. Also abutting photon field with electron field is frequently used for the irradiation of posterior neck when tolerable dose on spinal cord has been reached. Using 6 MV X-ray and 9 MeV electron beams of Clinac1800(Varian, USA) linear accelerator, we performed film dosimetry by the X-OMAT V film of Kodak in solid water phantom and the dose distribution at beam center of 2 half beams further examined according to depths(0 cm, 1.5 cm, 3 cm, 5 cm) for single anterior half beam and anterior/posterior half beam. The dose distribution to the junction line between photon and electron fields was also measured. For the single anterior half beam, the absorption doses at 0.3 cm, 0.5 cm and 1 cm distances from beam center were 88%, 93% and 95% of open beam, respectively. In the anterior/posterior half beams, the absorption doses at 0.3 cm, 0.5 cm and 1 cm distances from beam center were 92%, 93% and 95% of open beam, respectively At the junction line between photon and electron fields, hot spot was developed on the side of the photon field and a cold spot was developed on that of the electron field. The hot spot in the photon side was developed at depth 1.5 cm with 7 mm width. The maximum dose of hot spot was increased to 6% of reference doses in the photon field. The cold spot in the electron side was developed at all measured depths(0.5 cm-3 cm) with 1-12.5 mm widths. The decreased dose in the cold spot was 4.5-30% of reference dose in the electron field. With above results, we concluded that when using electron beam or independent jaw for head and neck radiotherapy, the hot and cold dose area should be considered as critical point.

  • PDF

A Study on Electron Dose Distribution of Cones for Intraoperative Radiation Therapy (수술중 전자선치료에 있어서 선량분포에 관한 연구)

  • Kang, Wee-Saing;Ha, Sung-Whan;Yun, Hyong-Geun
    • Progress in Medical Physics
    • /
    • v.3 no.2
    • /
    • pp.1-12
    • /
    • 1992
  • For intraoperative radiation therapy using electron beams, a cone system to deliver a large dose to the tumor during surgical operation and to save the surrounding normal tissue should be developed and dosimetry for the cone system is necessary to find proper X-ray collimator setting as well as to get useful data for clinical use. We developed a docking type of a cone system consisting of two parts made of aluminum: holder and cone. The cones which range from 4cm to 9cm with 1cm step at 100cm SSD of photon beam are 28cm long circular tubular cylinders. The system has two 26cm long holders: one for the cones larger than or equal to 7cm diamter and another for the smaller ones than 7cm. On the side of the holder is an aperture for insertion of a lamp and mirror to observe treatment field. Depth dose curve. dose profile and output factor at dept of dose maximum. and dose distribution in water for each cone size were measured with a p-type silicone detector controlled by a linear scanner for several extra opening of X-ray collimators. For a combination of electron energy and cone size, the opening of the X-ray collimator was caused to the surface dose, depths of dose maximum and 80%, dose profile and output factor. The variation of the output factor was the most remarkable. The output factors of 9MeV electron, as an example, range from 0.637 to 1.549. The opening of X-ray collimators would cause the quantity of scattered electrons coming to the IORT cone system. which in turn would change the dose distribution as well as the output factor. Dosimetry for an IORT cone system is inevitable to minimize uncertainty in the clinical use.

  • PDF

Dose Distribution of Co-60 Photon Beam in Total Body Irradiation (Co-60에 의한 전신조사시 선량분포)

  • Kang, Wee-Saing
    • Progress in Medical Physics
    • /
    • v.2 no.2
    • /
    • pp.109-120
    • /
    • 1991
  • Total body irradiation is operated to irradicate malignant cells of bone marrow of patients to be treated with bone marrow transplantation. Field size of a linear accelerator or cobalt teletherapy unit with normal geometry for routine technique is too small to cover whole body of a patient. So, any special method to cover patient whole body must be developed. Because such environments as room conditions and machine design are not universal, some characteristic method of TBI for each hospital could be developed. At Seoul National University Hospital, at present, only a cobalt unit is available for TBI because source head of the unit could be tilted. When the head is tilted outward by 90$^{\circ}$, beam direction is horizontal and perpendicular to opposite wall. Then, the distance from cobalt source to the wall was 319 cm. Provided that the distance from the wall to midsagittal plane of a patient is 40cm, nominal field size at the plane(SCD 279cm) is 122cm$\times$122cm but field size by measurement of exposure profile was 130cm$\times$129cm and vertical profile was not symmetric. That field size is large enough to cover total body of a patient when he rests on a couch in a squatting posture. Assuming that average lateral width of patients is 30cm, percent depth dose for SSD 264cm and nominal field size 115.5cm$\times$115.5cm was measured with a plane-parallel chamber in a polystyrene phantom and was linear over depth range 10~20cm. An anthropomorphic phantom of size 25cm wide and 30cm deep. Depth of dose maximum, surface dose and depth of 50% dose were 0.3cm, 82% and 16.9cm, respectively. A dose profile on beam axis for two opposing beams was uniform within 10% for mid-depth dose. Tissue phantom ratio with reference depth 15cm for maximum field size at SCD 279cm was measured in a small polystyrene phantom and was linear over depth range 10~20cm. An anthropomorphic phantom with TLD chips inserted in holes on the largest coronal plane was bilaterally irradiated by 15 minute in each direction by cobalt beam aixs in line with the cross line of the coronal plane and contact surface of sections No. 27 and 28. When doses were normalized with dose at mid-depth on beam axis, doses in head/neck, abdomen and lower lung region were close to reference dose within $\pm$ 10% but doses in upper lung, shoulder and pelvis region were lower than 10% from reference dose. Particulaly, doses in shoulder region were lower than 30%. On this result, the conclusion such that under a geometric condition for TBI with cobalt beam as SNUH radiotherapy departement, compensators for head/neck and lung shielding are not required but boost irradiation to shoulder is required could be induced.

  • PDF

Superficial Dosimetry for Helical Tomotherapy (토모테라피를 이용한 표면 치료 계획과 선량 분석)

  • Kim, Song-Yih;You, Sei-Hwan;Song, Tae-Soo;Kim, Yong-Nam;Keum, Ki-Chang;Cho, Jae-Ho;Lee, Chang-Geol;Seong, Jin-Sil
    • Radiation Oncology Journal
    • /
    • v.27 no.2
    • /
    • pp.103-110
    • /
    • 2009
  • Purpose: To investigate the feasibility of helical tomotherapy on a wide curved area of the skin, and its accuracy in calculating the absorbed dose in the superficial region. Materials and Methods: Two types of treatment plans were made with the cylinder-shaped 'cheese phantom'. In the first trial, 2 Gy was prescribed to a 1-cm depth from the surface. For the other trial, 2 Gy was prescribed to a 1-cm depth from the external side of the surface by 5 mm. The inner part of the phantom was completely blocked. To measure the surface dose and the depth dose profile, an EDR2 film was inserted into the phantom, while 6 TLD chips were attached to the surface. Results: The film indicated that the surface dose of the former case was 118.7 cGy and the latter case was 130.9 cGy. The TLD chips indicated that the surface dose was higher than these, but it was due to the finite thickness of the TLD chips. In the former case, 95% of the prescribed dose was obtained at a 2.1 mm depth, while the prescribed does was at 2.2 mm in the latter case. The maximum dose was about 110% of the prescribed dose. As the depth became deeper, the dose decreased rapidly. Accordingly, at a 2-cm depth, the dose was 20 % of the prescribed dose. Conclusion: Helical tomotherapy could be a useful application in the treatment of a wide area of the skin with curvature. However, for depths up to 2 mm, the planning system overestimated the superficial dose. For shallower targets, the use of a compensator such as a bolus is required.

Development of Dose Planning System for Brachytherapy with High Dose Rate Using Ir-192 Source (고선량률 강내조사선원을 이용한 근접조사선량계획전산화 개발)

  • Choi Tae Jin;Yei Ji Won;Kim Jin Hee;Kim OK;Lee Ho Joon;Han Hyun Soo
    • Radiation Oncology Journal
    • /
    • v.20 no.3
    • /
    • pp.283-293
    • /
    • 2002
  • Purpose : A PC based brachytherapy planning system was developed to display dose distributions on simulation images by 2D isodose curve including the dose profiles, dose-volume histogram and 30 dose distributions. Materials and Methods : Brachytherapy dose planning software was developed especially for the Ir-192 source, which had been developed by KAERI as a substitute for the Co-60 source. The dose computation was achieved by searching for a pre-computed dose matrix which was tabulated as a function of radial and axial distance from a source. In the computation process, the effects of the tissue scattering correction factor and anisotropic dose distributions were included. The computed dose distributions were displayed in 2D film image including the profile dose, 3D isodose curves with wire frame forms and dosevolume histogram. Results : The brachytherapy dose plan was initiated by obtaining source positions on the principal plane of the source axis. The dose distributions in tissue were computed on a $200\times200\;(mm^2)$ plane on which the source axis was located at the center of the plane. The point doses along the longitudinal axis of the source were $4.5\~9.0\%$ smaller than those on the radial axis of the plane, due to the anisotropy created by the cylindrical shape of the source. When compared to manual calculation, the point doses showed $1\~5\%$ discrepancies from the benchmarking plan. The 2D dose distributions of different planes were matched to the same administered isodose level in order to analyze the shape of the optimized dose level. The accumulated dose-volume histogram, displayed as a function of the percentage volume of administered minimum dose level, was used to guide the volume analysis. Conclusion : This study evaluated the developed computerized dose planning system of brachytherapy. The dose distribution was displayed on the coronal, sagittal and axial planes with the dose histogram. The accumulated DVH and 3D dose distributions provided by the developed system may be useful tools for dose analysis in comparison with orthogonal dose planning.

Beam Shaping by Independent Jaw Closure in Steveotactic Radiotherapy (정위방사선치료 시 독립턱 부분폐쇄를 이용하는 선량분포개선 방법)

  • Ahn Yong Chan;Cho Byung Chul;Choi Dong Rock;Kim Dae Yong;Huh Seung Jae;Oh Do Hoon;Bae Hoonsik;Yeo In Hwan;Ko Young Eun
    • Radiation Oncology Journal
    • /
    • v.18 no.2
    • /
    • pp.150-156
    • /
    • 2000
  • Purpose : Stereotactic radiation therapy (SRT) can deliver highly focused radiation to a small and spherical target lesion with very high degree of mechanical accuracy. For non-spherical and large lesions, however, inclusion of the neighboring normal structures within the high dose radiation volume is inevitable in SRT This is to report the beam shaping using the partial closure of the independent jaw in SRT and the verification of dose calculation and the dose display using a home-made soft ware. Materials and Methods : Authors adopted the idea to partially close one or more independent collimator jaw(5) in addition to the circular collimator cones to shield the neighboring normal structures while keeping the target lesion within the radiation beam field at all angles along the arc trajectory. The output factors (OF's) and the tissue-maximum ratios (TMR's) were measured using the micro ion chamber in the water phantom dosimetry system, and were compared with the theoretical calculations. A film dosimetry procedure was peformed to obtain the depth dose profiles at 5 cm, and they were also compared with the theoretical calculations, where the radiation dose would depend on the actual area of irradiation. Authors incorporated this algorithm into the home-made SRT software for the isodose calculation and display, and was tried on an example case with single brain metastasis. The dose-volume histograms (DVH's) of the planning target volume (PTV) and the normal brain derived by the control plan were reciprocally compared with those derived by the plan using the same arc arrangement plus the independent collimator jaw closure. Results : When using 5.0 cm diameter collimator, the measurements of the OF's and the TMR's with one independent jaw set at 30 mm (unblocked), 15.5 mm, 8.6 mm, and 0 mm from th central beam axis showed good correlation to the theoretical calculation within 0.5% and 0.3% error range. The dose profiles at 5 cm depth obtained by the film dosimetry also showed very good correlation to the theoretical calculations. The isodose profiles obtained on the home-made software demonstrated a slightly more conformal dose distribution around the target lesion by using the independent jaw closure, where the DVH's of the PTV were almost equivalent on the two plans, while the DVH's for the normal brain showed that less volume of the normal brain receiving high radiation dose by using this modification than the control plan employing the circular collimator cone only. Conclusions : With the beam shaping modification using the independent jaw closure, authors have realized wider clinical application of SRT with more conformal dose planning. Authors believe that SRT, with beam shaping ideas and efforts, should no longer be limited to the small spherical lesions, but be more widely applied to rather irregularly shaped tumors in the intracranial and the head and neck regions.

  • PDF

Analysis of Radiation Dose Enhancement for Spread Out Bragg-peak of Proton (확산된 피크의 양성자에서 선량 증강 현상에 대한 분석)

  • Hwang, Chulhwan;Kim, JungHoon
    • Journal of the Korean Society of Radiology
    • /
    • v.13 no.2
    • /
    • pp.253-260
    • /
    • 2019
  • Radiation dose enhancement is a method of increasing the cross section of interaction, thus increasing the deposited dose. This can contribute to linear energy transfer, LET and relative biological effectiveness, RBE. Previous studies on dose enhancement have been mainly focused on X, ${\gamma}-rays$, but in this study, the dose enhancement was analyzed for proton using Monte Carlo simulation using MCNP6. Based on the mathematical modeling method, energy spectrum and relative intensity of spread out Bragg-peak were calculated, and evaluated dose enhancement factor and dose distribution of dose enhancement material, such as aurum and gadolinium. Dose enhancement factor of 1.085-1.120 folds in aurum, 1.047-1.091 folds in gadolinium was shown. In addition, it showed a decrease of 95% modulation range and practical range. This may lead to an uncertain dose in the tumor tissue as well as dose enhancement. Therefore, it is necessary to make appropriate corrections for spread out Bragg-peak and practical range from mass stopping power. It is expected that Monte Carlo simulation for dose enhancement will be used as basic data for in-vivo and in-vitro experiments.