• Title/Summary/Keyword: 깃 요소 이론

Search Result 18, Processing Time 0.017 seconds

The Flight Trajectory of a Boomerang Simulated with Helicopter Theories (회전익 이론을 이용한 부메랑의 비행 궤적 연구)

  • Jang,Se-Myeong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.31 no.1
    • /
    • pp.49-57
    • /
    • 2003
  • The flight trajectory of a boomerang is predicted with the momentum theory (actuating disk theory) and the blade element method generally used as tools to analyze in the rotary-wing aerodynamics. Boomerangs made by students are actually compared with the computational results, utilized to get the physical intuition. The transition from helicopter mode to autogyro mode with the gyroscopic precession is observed in numerical analysis and experiment like a 'flying rotor' after the boomerang taking off. The whole system is shown to be highly nonlinear and very sensitive to the initial conditions. Various flight loci may be obtained if we change the parameters.

The Performance Estimation of Rotor in Wind Fence by Rotor Analysis Solver based on Actuator Disk Model (Actuator Disk Model 기반의 로터 해석자를 사용한 방풍 구조물 내부의 로터 성능 예측)

  • Kim, Taewoo;Oh, Sejong;Kang, Hee Jung;Yee, Kwanjung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.41 no.6
    • /
    • pp.429-439
    • /
    • 2013
  • The purpose of current study is to develop the rotor analysis solver and perform a rotor aerodynamic analysis in the wind fence. To this end, the rotor analysis solver based on actuator disk model was employed. To consider the asymmetric effect of the rotor in the wind fence, the flapping motion analysis was conducted with blade element theory for the effective angle of attack calculation. The validation cases which are the rotor with wall and ground were accomplished by developed solver. The decrease of rotor performance by wind fence was confirmed. The wind fence configuration was suggested which guarantees more than 95% rotor performance compared with the no fence case.

Prediction for Rotor Aerodynamics of Quadcopter Type Unmanned Aerial Vehicle Considering Gust and Flight Conditions (비행 조건의 영향을 고려한 쿼드콥터형 무인비행체의 로터 공력 특성 예측)

  • Park, SunHoo;Eun, WonJong;Shin, SangJoon
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.46 no.10
    • /
    • pp.833-844
    • /
    • 2018
  • This paper aims to predict the aerodynamic characteristics of individual rotor for the gust and flight conditions. Transformation procedure into the wind frame is conducted to analyze the gust. Hover, forward, and climb flight conditions of an individual rotor are analyzed using the blade element momentum theory (BEMT) considering the rigid blade flapping motion. XFOIL is used to derive aerodynamic results. Validation for hover, forward flight, and climb conditions are conducted using the present BEMT. In addition, a static experimental environment is constructed. The experimental results and the present BEMT are compared and verified.

The Extension and Validation of OpenFOAM Algorithm for Rotor Inflow Analysis using Actuator Disk Model (Actuator Disk 모델 기반의 로터 유입류 해석을 위한 OpenFOAM 알고리즘 확장)

  • Kim, Tae-Woo;Oh, Se-Jong;Yee, Kwan-Jung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.39 no.12
    • /
    • pp.1087-1096
    • /
    • 2011
  • The purpose of current study is to develop and verify the newly developed solver for analyzing rotor flow using the open-source code. The algorithm of standard solver, OpenFOAM, is improved to analyze the rotor inflow with and without fuselage. For the calculation of the rotor thrust, the virtual blade method based on the blade element method is employed. The inflow velocities on the rotor disk used to specify the effective angle of attack, have been included in the solver. The results of the current rotor inflow analysis are verified by comparing with other experimental and numerical results. It was confirmed that the modified solver provides satisfactory results for rotor-fuselage interaction problem.

CFD-based Thrust Analysis of Unmanned Aerial Vehicle in Hover Mode: Effects of Single Rotor Blade Shape (무인비행체 블레이드 형상 변화에 따른 단일로터의 제자리 비행 추력성능 분석)

  • Yun, Jae Hyun;Choi, Ha-Young;Lee, Jongsoo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.38 no.5
    • /
    • pp.513-520
    • /
    • 2014
  • An unmanned aerial vehicle (UAV) should be designed to be as small and lightweight as possible to optimize the efficiency of changing the blade shape to enhance the aerodynamic performance, such as the thrust and power. In this study, a computational fluid dynamics (CFD) simulation of an unmanned multi-rotor aerial vehicle in hover mode was performed to explore the thrust performance in terms of the blade rotational speed and blade shape parameters (i.e., taper ratio and twist angle). The commercial ADINA-CFD program was used to generate the CFD data, and the results were compared with those obtained from blade element theory (BET). The results showed that changes in the blade shape clearly affect the aerodynamic thrust of a UAV rotor blade.

Aerodynamic Design of the SUAV Proprotor (스마트무인기 프롭로터 공력설계)

  • Choi, Seong-Wook;Kim, Yu-Shin;Park, Young-Min;Kim, Jai-Moo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.33 no.9
    • /
    • pp.16-26
    • /
    • 2005
  • The aerodynamic design of a proprotor for the Smart UAV adopting tiltrotor aircraft concept is conducted in this study. Since proprotor of tiltrotor aircraft is operated at both rotary and fixed wing mode with single configuration rotor, the proprotor has to be designed to meet performance requirements for both flight modes. The aerodynamic design of proprotor is accomplished by combining three sources of data - the proprotor performance data, the aerodynamic data of vehicle, and the performance data of engine. The performance analysis code for proprotor is based on the combined momentum and blade element theory and validated by comparison with the TRAM data. In order to design configuration for a proprotor satisfying requirements for both rotary and fixed wing mode, various kind of performance maps are constructed for many performance and configuration parameters. From the analysis the twist angle of 38 degrees and the solidity of 0.118 are decided to be the optimal geometric parameters for both operating conditions.

Aerodynamic Design of 10 kW-level HAWT Rotor Blades (10 kW급 수평축 풍력 터빈 로터 블레이드의 공력 설계)

  • Chang, Se-Myong;Lee, Jang-Ho
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.35 no.10
    • /
    • pp.884-890
    • /
    • 2007
  • The procedure for the aerodynamic design of the rotor blades for 10 kW-level HAWT (horizontal axis wind turbine) has been investigated to be practiced systematically. The approximately optimal shape was designed using an inverse method based on the momentum theory and the blade element method. The configuration was tested in the wind tunnel of the Korea Air Force Academy, and the data was compared with those obtained from the real system manufactured from the present design. From this research, the authors established the systematic technolo for wind turbine blades, and set up the technical procedure which can be extended for the future design of middle and large sized wind turbines.

The Study of Advanced Propeller Blade for Next Generation Turboprop Aircraft -Part I. Aerodynamic Design and Analysis (차세대 터보프롭 항공기용 최신 프로펠러 블레이드 연구 -Part I. 공력 설계 및 해석)

  • Choi, Won
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.40 no.12
    • /
    • pp.1017-1024
    • /
    • 2012
  • The aerodynamic design and analysis on advanced propeller with blade sweep was performed for recent turboprop aircraft. HS1 airfoil series are selected as a advanced propeller blade airfoil. Adkins method is used for aerodynamic design and performance analysis with respect to the design point. Adkins method is based on the vortex-blade element theory which design the propeller to satisfy the condition for minimum energy loss. Propeller geometry is generated by varying chord length and pitch angle at design point of target aircraft. Advanced propeller is designed by apply the modified chord length, the tip sweep which is based on the geometry of conventional propeller. The aerodynamic characteristics of the designed Advanced propeller were verified by CFD(Computational Fluid Dynamic) and evaluated to be properly designed.

Design and Ground Test of Propeller for 50 m-long Airship Propulsion (50 M급 비행선 추진용 프로펠러 설계 및 지상성능시험)

  • Kim,Hyeong-Jin;Lee,Chang-Ho;Jeon,Seong-Min;Im,Byeong-Jun;Lee,Jin-Geun;Yang,Su-Seok
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.31 no.10
    • /
    • pp.112-119
    • /
    • 2003
  • Design analysis and grow1d test on propellers for 50 m-long airship propulsion were conducted. The design analysis code developed by adopting the vortex-blade-element theory was applied to the design of optimum propeller at the condition of maximum flight speed at sea level. In order to validate the performance of the propeller, ground test of the propeller was performed, and thrust and torque were measured for several different pitch angles at static condition. The power coefficients and thrust coefficients obtained by the test compared well with the analysis results.

A Study on Hovering Performance of Personal Air Vehicle According to Distance between Rotor Blade Axis via Computational Fluid Dynamics (전산유체역학을 통한 PAV의 로터 블레이드 축간거리에 따른 호버링 성능 변화 연구)

  • Yoon, Jaehyun;Noh, Wooseung;Doh, Jaehyeok
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.21 no.5
    • /
    • pp.53-60
    • /
    • 2022
  • In this study, the conceptual design and performance evaluation of a personal air vehicle (PAV) is presented, which is a potential futuristic individual transportation. The blade element theory (BET) is employed to compute a rotational velocity. A computational fluid dynamics (CFD) simulation is performed to investigate the difference in the thrust performance in the rotor axis distance of a quad-copter PAV in hovering. Modal analysis is performed to create a Campbell diagram to investigate critical speed. Consequently, a quad-copter PAV changes the aerodynamics thrust and critical velocity according to the rotor axis distance.