• Title/Summary/Keyword: 기후변화 지표종

Search Result 71, Processing Time 0.024 seconds

Potential Changes in the Distribution of Seven Agricultural Indicator Plant Species in Response to Climate Change at Agroecosystem in South Korea (농업생태계 기후변화 지표식물 7종의 분포 특성과 기후변화에 따른 영향 예측)

  • Hyung-Kyu, Nam;Song, Young-Ju;Kwon, Soon-Ik;Eo, Jinu;Kim, Myung-Hyun
    • Korean Journal of Ecology and Environment
    • /
    • v.51 no.3
    • /
    • pp.221-233
    • /
    • 2018
  • This study was carried out to predict the current and future potential distribution and to identify the factors affecting potential distribution of 7 plants(Lamium amplexicaule L., Trigonotis peduncularis(Trevir.) Benth. ex Hemsl, Capsella bursa-pastoris (L.) L. W. Medicus, Taraxacum officinale Weber, Veronica persica Poir., Conyza sumatrensis E. Walker, Hypochaeris radicata L.) selected as indicators for climate change in agricultural ecosystem. We collected presence/absence data of 7 indicator plants at 108 sites in South Korea and applied the Maxent model. According to future climate scenario, the distribution area of C. bursa-pastoris(L.) L. W. Medicus, T. officinale Weber, and V. persica Poir. was expected to be reduced, but the distribution range was to be maintained. The distribution areas and range of the C. sumatrensis E. Walker and H. radicata L. were expected to be increased. The distribution area and range of T. peduncularis (Trevir.) Benth. Ex Hemsl. and L. amplexicalue L. were rapidly decreased. Non-climatic factors such as land cover and altitude were the most important environmental variable for T. officinale Weber, C. bursa-pastoris(L.) L.W.Medicus, V. persica Poir., T. peduncularis (Trevir.) Benth. Ex Hemsl., and L. amplexicalue L.. Climatic factors were the most important environmental variable for C. sumatrensis E. Walker and H. radicata L.. It is expected that the future potential distribution of 7 indicator plants response to climate change will be used to monitor and to establish the management plan.

Habitat Prediction and Impact Assessment of Eurya japonica Thunb. under Climate Change in Korea (기후변화에 따른 한반도 사스레피나무의 생육지 예측과 영향 평가)

  • Yun, Jong-Hak;Park, Jeong Soo;Choi, Jong-Yun;Nakao, Katsuhiro
    • Journal of Environmental Impact Assessment
    • /
    • v.26 no.5
    • /
    • pp.291-302
    • /
    • 2017
  • The research was carried out in order to find climate factors which determine the distribution of Eurya japonica, and the potential habitats (PHs) under the current climate and climate change scenario by using species distribution models (SDMs). Four climate factors; the warmth index (WI), the minimum temperature of the coldest month (TMC), summer precipitation (PRS), and winter precipitaion (PRW) : were used as independent variables for the model. Seventeen general circulation models under RCP (Representative concentration pathway) 8.5 scenarios were used as future climate scenarios for the 2050s (2040~2069) and 2080s (2070~2099). Highly accurate SDMs were obtained for E. japonica. The model of distribution for E. japonica constructed by SDMs showed that minimum temperature of the coldest month (TMC) is a major climate factor in determining the distribution of E. japonica. The area above the $-5.7^{\circ}C$ of TMC revealed high occurrence probability of the E. japonica. Future PHs for E. japonica were projected to increase respectively by 2.5 times, 3.4 times of current PHs under 2050s and 2080s. It is expected that the potential of E. japonica habitats is expanded gradually. E. japonica is applicable as indicator species for monitoring in the Korean Peninsula. E. japonica is necessary to be monitored of potential habitats.

A Faunistic Study of Insects of Uninhabited Islands in the Docho-myeon, Sinan-gun, Jeollanam-do, Korea (전라남도 신안군 도초면 일대 무인도서의 곤충상)

  • Cho, Young-Ho;Kim, Young-Jin;Lim, Heon-Myoung;Han, Yong-Gu;Choi, Min-Joo;Nam, Sang-Ho
    • Korean Journal of Environment and Ecology
    • /
    • v.25 no.5
    • /
    • pp.673-684
    • /
    • 2011
  • Shinan-gun in Jeollanam-do has 1,004 islands which is the biggest number in the whole country. As most of the islands in Korea are secluded from the mainland or other islands, biological surveys are very important for the biogeographical perspective. Especially, the species diversity of insecta on an island plays an important role in the food stability of top predators, including birds. This study provides baseline academic resources for the preservation and management of uninhabited islands by providing information about the status of insects on the uninhabited islands in Docho-myeon, Jeollanam-do, Korea. As far as the appearance aspects of the insects in 28 uninhabited islands were 921 individuals, 122 species, 60 families or 12 orders. Ga Island showed the highest appearance as 32 species, 22 families or 9 orders. Appearance of specific insects was investigated unknown species: 1 species, southern characteristic species: 3 species, coastal dune species: 1 species, climate-sensitive indicator species: 1 species.

Ecohydrological response of P inus densiflora to climate change: Interactions between soil moisture and photosynthetic pathway (기후변화에 대한 소나무 반응: 토양 수분과 광합성 경로 사이의 상호작용)

  • Woo, Dong Kook
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2022.05a
    • /
    • pp.481-481
    • /
    • 2022
  • 본 연구에서는 기후 변화 완화에 대한 잠재력을 평가하기 위해 국내에서 가장 우세한 소나무 종인 Pinus densiflora의 기후변화에 대한 반응을 평가하였다. 기후변화의 시나리오로 4가지 대표 농도경로(RCP)에 기반 하여 CO2, 강수량, 온도의 변화를 개별 및 조합하였다. 생태수문학적 및 지구화학적 모델인 ecosys를 활용 및 보완하여 광릉 시험림에 적용하였다. 본 연구에서는 대기 중 CO2 증가가 총일차생산량(GPP)과 순일차생산량(NPP)에 미치는 긍정적인 영향이 강수량과 기온 변화로 인한 부정적인 영향보다 더 큰 것으로 나타났다. 특히, 기준 시나리오와 비교하여 각각 RCP2.6, 4.5, 6.5, 8.5에서 3.79%, 13.44%, 18.26%, 28.91%의 NPP 개선이 모의되었다. 또한, 본 연구에서는 지표하 질소 유출과 지표 N2O 플럭스가 기후 변화가 심해짐에 따라 소나무 생장 향상 및 토양 수분 저하로 인하여 토양 질소 손실 감소가 모의되었다. 기후변화의 강도가 증가함에 따라 증발산량이 증가하였지만, 기공 감소는 토양에서 흡수하는 물이용 및 광합성 효율 증진을 가져왔다. 이러한 결과는 소나무가 기후 변화를 완화하는 환경 친화적인 선택으로 작용할 수 있는 잠재성을 나타낸다.

  • PDF

Environmental features of the distribution areas and climate sensitivity assesment of Korean Fir and Khinghan Fir (구상나무와 분비나무분포지의 환경 특성 및 기후변화 민감성 평가)

  • Park, Hyun-Chul;Lee, Jung-Hwan;Lee, Gwan-Gyu;Um, Gi-Jeung
    • Journal of Environmental Impact Assessment
    • /
    • v.24 no.3
    • /
    • pp.260-277
    • /
    • 2015
  • The object of this study was the climate change sensitivity assessment of Korean Fir and Khinghan Fir as a representative subalpine plant in South Korea. Using species distribution models, we predicted the probability of current and future species distribution. According to this study, potential distribution that have been predicted based on the threshold (MTSS) is, Khinghan Fir was higher loss rate than Korean Fir. And in the climate change sensitivity assessment using the scalar sensitivity weight ($W_{is}$), $W_{is}$ of Korean Fir was higher relatively than the sensitivity of Khinghan Fir. When using the species distribution models as shown in this study may vary depending on the probability of presence data and spatial variables. Therefore should be prior decision studies on the ecological environment of the study species. Based on this study, if it is domestic applicable climate change sensitivity assessment method is developed. it would be important decision-making to climate change and biological diversity of adaptation policy.

Habitat Climate Characteristics of Lauraceae Evergreen Broad-leaved Trees and Distribution Change according to Climate Change (녹나무과 상록활엽수 자생지 기후특성과 기후변화에 따른 분포 변화)

  • Yu, Seung-Bong;Kim, Byung-Do;Shin, Hyun-Tak;Kim, Sang-Jun
    • Korean Journal of Environment and Ecology
    • /
    • v.34 no.6
    • /
    • pp.503-514
    • /
    • 2020
  • Climate change leads to changes in phenological response and movement of plant habitats. Korea's evergreen broad-leaved forest has widened its distribution area compared for the past 20 years, and the range of its native habitats is moving northward. We analyzed climate indices such as the warmth index, the cold index, the lowest temperature in the coldest month, and the annual average temperature, which are closely related to vegetation distribution, to predict the change in the native habitat of Lauraceae evergreen broad-leaved trees. We also analyzed the change and spatial distribution to identify the habitat climate characteristics of 8 species of Lauraceae evergreen broad-leaved trees distributed in the warm temperate zone in Korea. Moreover, we predicted the natural habitat change in the 21st century according to the climate change scenario (RCP 4.5/8.5), applying the MaxEnt species distribution model. The monthly average climate index of the 8 species of Lauraceae evergreen broad-leaved trees was 116.9±10.8℃ for the temperate index, the cold index 3.9±3.8℃, 1495.7±455.4mm for the annual precipitation, 11.7±3.5 for the humidity index, 14.4±1.1℃ for the annual average temperature, and 1.0±2.1℃ for the lowest temperature of winter. Based on the climate change scenario RCP 4.5, the distribution of the Lauraceae evergreen broad-leaved trees was analyzed to expand to islands of Jeollanam-do and Gyeongsangnam-do, adjacent areas of the west and south coasts, and Goseong, Gangwon-do on the east coast. In the case of the distribution based on the climate change scenario RCP 8.5, it was analyzed that the distribution would expand to all of Jeollanam-do and Gyeongsangnam-do, and most regions except for some parts of Jeollabuk-do, Chungcheongnam-do, Gyeongsangbuk-do, and the capital region. For the conservation of Lauraceae evergreen broad-leaved trees to prepare for climate change, it is necessary to establish standards for conservation plans such as in-situ and ex-situ conservation and analyze various physical and chemical characteristics of native habitats. Moreover, it is necessary to preemptively detect changes such as distribution, migration, and decline of Lauraceae evergreen broad-leaved trees following climate change based on phenological response data based on climate indicators and establish conservation management plans.

Prediction of the Flight Times of Hydrochara affinis and Sternolophus rufipes in Paddy Fields Based on RCP 8.5 Scenario (RCP 8.5 기후변화 시나리오를 적용한 논 서식 애물땡땡이 (Sternolophus rufipes)와 잔물땡땡이(Hydrochara affinis)의 비행시기 예측)

  • Choi, Soon-Kun;Kim, Myung-Hyun;Choe, Lak-Jung;Eo, Jinu;Bang, Hea-Son
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.18 no.1
    • /
    • pp.16-29
    • /
    • 2016
  • The total area of paddy field was estimated to be 55 % of the cultivated lands in South Korea, which is approximately 1 million hectares. Organisms inhabiting paddy fields if they are sensitive to environmental changes can be environmental indicator of paddy fields. Biological indicators such as phenology and distributional range are evaluated as intuitive and quantitative method to analyze the impact of climate change. This study aims to estimate flight time change of Hydrophilidae species' based on the RCP 8.5 climate change scenario. Unmanned monitoring systems were installed in Haenam, Buan, Dangjin and Cheorwon relative to the latitudinal gradient. In the three regions excepting Cheorwon, it was able to measure the abundance of flying Hydrochara affinis and Sternolophus rufipes. Degree-day for the flight time was determined based either on field measurement values and estimates of 2020s, 2050s and 2080s from KMA climate change scenario data. As a result, it is found that date of both species of initial flight becomes 15 days earlier, that of peak flight becomes 22 days earlier and that of final flight does 27 days earlier in 2080s compared to 2020s. The climate change impact on flight time is greater in coastal area, rural area and valley than inland area, urban area and plan. H. affinis and S. rufipes can be used as climate change indicator species.

Altitudinal Distribution of Ants in Mt. Gariwangsan, Korea (가리왕산 지역의 개미 고도별 분포)

  • Cho, Kyoung-Yeon;Kim, Il-Kwon;Lyu, Dong-Pyeo
    • Korean Journal of Environment and Ecology
    • /
    • v.34 no.2
    • /
    • pp.115-120
    • /
    • 2020
  • This study investigated the dominant species and the population variation of the ant species, an indicator species of biodiversity, to obtain basic data on the changes of population according to the future climate change. The survey period was from June to September 2013, and we investigated the distribution of ants by square irradiation method (10m × 10m) using traps. The survey in each altitude identified a total of 14 species of 11 genera in 3 subfamilies and collected 15,466 individuals. We confirmed the distribution of 4,548 individuals of 13 species at low altitude (700m), and the dominant species was Aphaenogaster japonica (49.9%). At the middle altitude (900m), we collected 9,129 individuals of 8 species, and the dominant species was Pheidole fervida (57.7%). At high altitude (1,100m), we identified 1,789 individuals of 10 species, and Myrmica kotokui (43.3%) was the dominant species. It was confirmed that Aphaenogaster japonica, Nylanderia flavipes, and Pheidole fervida were widely distributed throughout the altitudes.

Potential Habitats and Change Prediction of Machilus thunbergii Siebold & Zucc. in Korea by Climate Change (기후변화에 따른 한반도 후박나무의 잠재 생육지 및 변화예측)

  • Yun, Jong-Hak;Nakao, Katsuhiro;Park, Chan-Ho;Lee, Byoung-Yoon
    • Korean Journal of Environment and Ecology
    • /
    • v.25 no.6
    • /
    • pp.903-910
    • /
    • 2011
  • The research was carried out in order to find climate factors which determine the distribution of Machilus thunbergii, and the potential habitats under the current climate and three climate change scenario by using classification tree (CT) model. Four climate factors; the minimum temperature of the coldest month (TMC), the warmth index (WI), summer precipitation (PRS), and winter precipition (PRW) : were used as independent variables for the model. The model of distribution for Machilus thunbergii (Mth-model) constructed by CT analysis showed that minimum temperature of the coldest month (TMC) is a major climate factor in determining the distribution of M. thunbergii. The area above the $-3.3^{\circ}C$ of TMC revealed high occurrence probability of the M. thunbergii. Potential habitats was predicted $9,326km^2$ under the current climate and $61,074{\sim}67,402km^2$(South Korea: $58,419{\sim}61,137km^2$, North Korea: $2,655{\sim}6,542km^2$) under the three climate change scenarios (CCCMA-A2, CSIRO-A2, HADCM3-A2). The Potential habitats was to predicted increase by 51~56%(South Korea: 49~51%, North Korea: 2~5%) under the three climate change scenarios. The potential expand of M. thunbergii habitats has been expected that it is competitive with warm-temperate deciduous broadleaf forest. M. thunbergii is evaluated as the indicator of climate change in Korea and it is necessary for M. thunbergii to monitor of potential habitats.

Conservation Measures and Distribution of Vulnerable Species for Climate Change in Gayasan National Park (가야산국립공원 기후변화취약종의 분포 및 보전방안)

  • Kim, Yoon-Young;Leem, Hyosun;Han, Seahee;Ji, Seong-Jin;So, Soonku
    • Korean Journal of Plant Resources
    • /
    • v.30 no.2
    • /
    • pp.167-175
    • /
    • 2017
  • We conducted a total of 28 surveys from March to October 2016 in Gayasan National Park, to identify threatened plants for climate change, as well as for the effective management of biological organisms and resources against climate changes in Korea. Regarding threatened plants for climate change, we identified a total of 39 taxa, with 11 northern, 2 southern, and 26 taxa of concern. Among these taxa, 33 were identified as wild species. The species threatened by climate change located in the subalpine regions of Gayasan National Park were Abies holophylla Maxim., Abies koreana Wilson, Pinus koraiensis Siebold & Zucc., Betula ermanii Cham., Berberis amurensis Rupr., Rhododendron tschonoskii Maxim., Vaccinium hirtum var. koreanum (Nakai) Kitam., Primula modesta var. hannasanensis T.Yamaz., Trientalis europaea var. arctica (Fisch.) Ledeb., Thymus quinquecostatus Celak., Parasenecio firmus (Kom.) Y.L.Chen, and Lilium cernuum Kom. These species are expected to be particularly vulnerable to the effects of global warming, since they were confirmed to have a very narrow vertical distribution range. Moreover, although the following species are not included in the list of plants threatened by climate change, it is assumed that the endemic species that grow at the summit, and Grade V floristics special plants, such as Pedicularis hallaisanensis Hurus., Allium thunbergii var. deltoides (S.O.Yu, S.Lee & W.Lee) H.J.Choi & B.U.Oh, Heloniopsis tubiflora Fuse, N.S.Lee & M.N. Tamura, Aletris glabra Bureau & Franch, and Gymnadenia cucullata (L.) Rich., will also be extremely vulnerable to climate change. Therefore, we believe that measures for the conservation of these species are urgently needed, and also that the definition of species threatened by climate change should be broadened to include more objective and valid taxa through the long-term monitoring of species distributed around the summit area.